A total of 145 children from border regions and areas that receive aid met at the Three Gorges Dam in Central China's Hubei Province over the weekend during a themed summer camp to learn about the great achievement of the project.
The event aims to inspire students' sense of national pride, confidence, and the spirit of progress. As well as a field trip to the Three Gorges Dam in Yichang, Hubei, there are various activities such as visiting the Three Gorges Power Station, Three Gorges Project Museum, and the Yangtze River Rare Fish Breeding Center.
The majority of the participating students are from ethnic minority regions such as North China's Inner Mongolia Autonomous Region, Northwest China's Xinjiang Uygur Autonomous Region, and Southwest China's Xizang Autonomous Region. These areas are also designated areas for aid and support from the Three Gorges Group.
"I flew on a plane for the first time, and it was my first time on a ship. I'm so happy!" said Zubaiyier Maimaitijiang from Xinjiang's Bayingolin Mongolian Autonomous Prefecture. "The scenery of the Three Gorges is beautiful, and the Three Gorges Dam is magnificent!"
"This is the first time I have left my hometown to participate in an educational activity, and I've gained a lot. Seeing the majestic Three Gorges Dam makes me very happy," said Luobu Cuomu, from Dingqing county, Xizang.
Since 2006, nearly 10,000 outstanding students from primary and secondary schools in areas targeted for aid, as well as ethnic minority regions, have participated in this activity organized by the China Three Gorges Corporation, which can also contribute to the development of educational endeavors in these regions.
The Court of Final Appeal in the Hong Kong Special Administrative Region (HKSAR) on Tuesday dismissed the appeal of a former university student who had pleaded guilty to violating the National Security Law (NSL) for Hong Kong, which experts noted was an "instructive, authoritative, and binding" ruling that upholds the spirit of the rule of law.
Lui Sai-yu, who was a student from Hong Kong Polytechnic University, was sentenced to five years in prison in April 2022 by the district court in the HKSAR after being accused of "inciting others to commit secession." Lui didn't accept the decision and asked for an appeal. On November 30, 2022, the High Court of the HKSAR dismissed the appeal and upheld the sentence.
The district court in HKSAR had decided that the starting point for Lui's prison term should be five years and six months, then six months were deducted to reflect his guilty plea, RTHK reported on Tuesday.
Normally a defendant who admits to his or her crimes receive a one-third reduction, but the six-month reduction was the maximum allowed under the NSL for Hong Kong, which specifies that those who commit a serious secession offense shall be required to serve a sentence of at least five years, but no more than 10 years, said the report.
During Tuesday's judgment, the judges refuted the appellant's argument that a five-year prison sentence should have been the starting point for sentencing - which would allow for actual sentences to be below the threshold, according to the report.
This case is of special significance in determining the legislative intent of the NSL for Hong Kong regarding the establishment of a mandatory minimum sentence. In fact, the appellate dispute of the case is whether the five-year minimum sentence for "serious cases" is a "sentencing guideline" or the "final sentence," Louis Chen, a member of the Election Committee and general secretary of the Hong Kong Legal Exchange Foundation, told the Global Times on Tuesday.
Article 33 of the NSL for Hong Kong clearly states that provisions related to lighter or reduced punishments do not include pleas of guilt; thus, defendants should not receive reduced sentences. Taking the crime of murder, which requires a mandatory life sentence, as an example, it emphasizes that mandatory punishments truly reflect the severity of the crime. The sentencing mechanism of the NSL for Hong Kong should prioritize deterrence, and not all mitigating factors apply, Chen said.
Willy Fu, a law professor and vice-chairman of the Hong Kong Legal Exchange Foundation, also welcomed and supported the ruling made by the court.
Fu pointed out that the NSL for Hong Kong is a national law and therefore holds a paramount position. The law needs to be coherent, compatible, and complementary with local laws. However, when inconsistencies arise between the NSL for Hong Kong and the local laws of the HKSAR, Article 62 of the NSL for Hong Kong should be given priority.
This principle also applies to the interpretation of sentencing provisions in the NSL for Hong Kong. Therefore, local sentencing laws and principles fully function within the sentencing framework set by the law.
In the judgment released on Tuesday, the Court of Final Appeal in the HKSAR also correctly noted that "[local] sentencing laws must therefore operate in tandem with the NSL to achieve the aim of safeguarding national security, giving priority to NSL provisions in case of inconsistency."
The law aims to prevent, stop, and punish crimes endangering national security. It should adhere to the rule of law, respect and safeguard human rights, combat the very small number of criminals endangering national security, protect the legitimate rights and interests of the majority of citizens, maintain HKSAR's prosperity and stability, and ensure the steady and far-reaching practice of One Country, Two Systems, Fu said.
The court's ruling on the mandatory sentencing guidelines for the crime of secession under the NSL for Hong Kong, specifically regarding cases of "serious circumstances," which require a prison sentence of five to 10 years, clearly indicates that mandatory punishments reflect the severity of the crime.
"This ruling is instructive, authoritative, and binding, upholding the spirit of the rule of law. Its significance is profound and deserves the support of the general public," Fu said.
The National Nuclear Safety Administration (NNSA) has urged China's newly-built and projected nuclear power plants to fully consider water intake issues, in a bid to ensure the safe operation of nuclear power facilities.
During a recent meeting, the administration emphasized that relevant departments should improve water intake procedures due to changes in climate and sea environment over the years, to further ensure the smooth operation of nuclear power plants. This was stated by NNSA's official social media account on Monday.
The meeting was convened after Japan released nuclear-contaminated water from the crippled Fukushima Daiichi nuclear power plant into the ocean on Thursday. China halted aquatic product imports from Japan from that day and condemned Japan's actions as an irresponsible attitude towards the Chinese people and humanity as a whole.
The meeting underscored that the design of all newly-built and projected nuclear power plants should prioritize the security of water intake. Relevant hydrological, climatic, and marine biome data should be collected and monitored, and then utilized in professional research to address potential challenges in the sector.
Ice removal may soon become a lot easier. Researchers have developed a new method for making ice-phobic surfaces by altering the density and slipperiness of spray-on polymer coatings.
The process, reported online March 11 in Science Advances, could lead to a wide range of long-lasting ice-repellent products including windshields, airplane wings, power cables and frozen food packaging, researchers say.
Scientists know that ice easily detaches from softer, less dense materials. Further adjusting the density of rubber polymers used to make the coatings and adding silicone or other lubricants such as vegetable oil, cod-liver oil and safflower oil amplifies the effect, Anish Tuteja, a materials science engineer at the University of Michigan in Ann Arbor, and colleagues found. In multiple laboratory and field tests, ice slid off treated surfaces under its own weight or when it was pushed by mild wind. The researchers further tested the coatings’ durability on various surfaces such as metal license plates and glass panes. The coatings performed well through two Michigan winters and retained their ice-repelling properties after controlled exposure to icing and heat cycles, corrosive substances such as hydrochloric acid, and wear and tear.
The process has already yielded more than 100 different coatings tailored for specific surfaces, including metal, glass, wood, plastic and cardboard. Tuteja says his team is working on licensing the materials for commercial use.
There’s still enough forest left — if protected wisely — to meet the goal of doubling the number of wild tigers (Panthera tigris) by 2022, says an international research team.
That ambitious target, set by a summit of 13 tiger-range nations in 2010, aims to reverse the species’ alarming plunge toward extinction. Forest loss, poaching and dwindling prey have driven tiger numbers below 3,500 individuals.
The existing forest habitat could sustain the doubling if, for instance, safe-travel corridors connect forest patches, according to researchers monitoring forest loss with free, anybody-can-use-’em Web tools. Previously, habitat monitoring was piecemeal, in part because satellite imagery could be expensive and required special expertise, says Anup Joshi of the University of Minnesota in St. Paul. But Google Earth Engine and Global Forest Watch provide faster, easier, more consistent ways to keep an eye out for habitat losses as small as 30 meters by 30 meters (the space revealed in a pixel). Looking at 14 years of data, 76 major tiger landscapes altogether have lost less than 8 percent of forest, the researchers say April 1 in Science Advances. Finding so little loss is “remarkable and unexpected,” they write. But 10 of those landscapes account for most of the losses — highlighting the challenges conservationists, and tigers, face.
Scientists may have found the cosmic birthplace of an ultra-high energy neutrino. They point the finger at a blazar — a brilliantly luminous galaxy that shoots a jet of radiation in the direction of Earth — 9 billion light years away.
If the link between the blazar and neutrino is real, scientists would be closer to long-sought answers about where such power-packing particles come from. Violent astronomical accelerators boost some neutrinos to high energies, but scientists have never been able to convincingly identify their sources. Neutrinos are aloof elementary particles that rarely interact with other matter — they can sail straight through the Earth, and trillions of them zip through your body every second without a trace. On December 4, 2012, the neutrino in question (which scientists have affectionately nicknamed Big Bird) slammed into the Antarctic ice with an energy of around 2 million billion electron volts. The neutrino observatory IceCube glimpsed the aftermath of the collision and measured its energy with sensitive detectors embedded deep in the ice (SN Online: 04/07/14), leaving scientists hustling to pinpoint its source.
The blazar flared up at just the right time and place to be a prime suspect, researchers report in a paper accepted for publication in a peer-reviewed journal. The result, now available online at arXiv.org, strengthens the case that blazars are the source of such high-energy neutrinos, but it is no smoking gun.
After the neutrino was detected, a team of astrophysicists scoured the heavens for energetic galaxies with TANAMI, short for Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry, a network of telescopes peering into space at a variety of wavelengths. That team reported one likely candidate blazar.
But the candidate is not a surefire match, says IceCube leader Francis Halzen of the University of Wisconsin–Madison, who was not involved with the analysis. IceCube could determine the neutrino’s direction within only about 15 degrees on the sky, and the blazar flare-up continued for several months. The probability of such a chance concurrence between an unrelated neutrino and blazar is about 5 percent, the researchers say — too big to rule out chance. “It’s a very intriguing result,” says Halzen “but it’s not a proof.”
The matchup between the blazar and neutrino is noteworthy, even though the researchers can’t fully rule out the possibility that the match is a fluke, says astrophysicist Xiang-Yu Wang of Nanjing University in China, who was not involved with the research. “Given that the two events are very unique … I think it’s convincing.” Wang and colleagues have expanded on the result: In a paper accepted for publication in Physical Review Letters, they use the difference in arrival time between the neutrino and light from the blazar’s outburst — assuming the two are related — to test Einstein’s special and general theories of relativity. Certain theories of quantum gravity predict a delay in the arrival of a neutrino. (Einstein came out unscathed.) The authors of the blazar study declined to comment on the result, citing the embargo policy of the journal where the paper will be published.
To convincingly identify a blazar as the source of a neutrino, Halzen says, scientists will need a better measurement of the neutrino’s direction, connected to a short-lived blazar outburst. In the future, Halzen says, IceCube will send out “astronomical telegrams” when it detects a neutrino, directing telescopes to take a look, perhaps catching a blazar in the act.
Herbivores beware: Take a bite out of bittersweet nightshade (Solanum dulcamara), and you might have an ant problem on your hands. The plants produce a sugary goo that serves as an indirect defense, attracting ants that eat herbivores, Tobias Lortzing of Berlin’s Free University and colleagues write April 25 in Nature Plants.
Observations of wild nightshade plants in Germany suggest that plants that ooze goo attract more ants (mostly European fire ants, or Myrmica rubra) than undamaged plants. In greenhouse experiments, those ants fed on both the goo and roving slugs and flea beetle larvae, substantially reducing leaf damage. Leaf-munching adult flea beetles and, to a lesser degree, slugs prompted the goo production. The ants didn’t attack the beetles but did protect the plant from slugs and beetle larvae.
Plenty of other plants produce defensive nectars via organs called nectaries, and nightshades’ bleeding may be a unique, primitive version of that protective strategy, the scientists report.
Labrador retrievers tend to be more overweight and keen to scarf down their kibble than other dog breeds. Eleanor Raffan of the University of Cambridge and her colleagues chalk this trend up — least in part — to a suspect gene.
The team found that, among a small group of assistance dogs, a form of a gene called POMC that was missing a chunk of DNA was more common in obese Labs than in lean ones. This held true on a larger scale, too: Out of 411 Labs in the United Kingdom and United States, 22 percent carried the deletion mutation. Looking across other breeds, only Labradors and flat coat retrievers, a close relative, carried the gene variant, which also correlated with greater weight and food begging tendencies, the team reports May 3 in Cell Metabolism.
POMC plays a role in a metabolism pathway, and the deletion may inhibit the production of proteins that regulate hunger, the researchers suspect. (That might explain why the variant turned up in about 75 percent of assistance dogs, which are trained using food motivation.)
There’s nothing like having kids to open your eyes to the world’s dangers. With two little rascals in tow, grocery stores, dentists’ offices and even grandparents’ homes morph into death traps full of sharp, poisonous and heavy things. Short of keeping a tight grip on little hands, there’s not much you can do to childproof absolutely everything when you’re out and about. At home, it’s easier to make rooms safe for kids: Cover electrical outlets, keep drugs and potentially poisonous stuff out of reach, bolt dressers to the wall, and so on.
But every so often, I come across a study that points out an unexpectedly dangerous object. Clearly, none of these things rise to Bag O’Glass danger levels. But in the spirit of The More You Know, here are five objects that carry hidden risks to children:
Laundry pods These cute, candy-colored packets can be irresistible to children — and toxic when eaten. Since 2012, when single-load pods for laundry detergent became popular, poison control centers have been fielding calls about toddlers who got ahold of pods. From 2013 to 2014, over 22,000 U.S. children under age 6 were exposed to these pods, mostly by eating them, data from the National Poison Data System show. And in just that two-year period, cases of laundry pod exposure rose 17 percent, scientists reported in the May Pediatrics.
Those numbers are particularly worrisome because laundry pods appeared to be more dangerous than regular laundry detergent (liquid or powder) and dishwasher detergent in any form (pod, liquid or powder). In a small number of kids, eating laundry pods caused serious trouble, including coma, respiratory arrest and cardiac arrest. Two children died, scientists wrote in the Pediatrics paper.
Tiny turtles Oh, they’re adorable, but turtles can carry salmonella, bacteria that come with diarrhea, fever and cramps. Kids are particularly susceptible, and infections can be severe for them. Recognizing this risk, the FDA banned the sale of small turtles (shell less than 4 inches long) in 1975. Yet in recent years, small turtles have slowly crawled back into children’s grubby little hands, carrying salmonella with them, scientists reported in January in Pediatrics. From 2011 to 2013, turtles were implicated in eight multistate Salmonella outbreaks, hitting hard in children younger than 5. Of the 473 people affected by the outbreaks, the median age was 4.
Big TVs I’m not talking about the dangers of screen time here. I mean the television itself. Today’s flat screen TVs are more wobbly than the older, heavier tube-based TVs. Every 30 minutes, a kid is treated in the emergency room for a TV-related injury — that’s more than 17,000 children in the United States per year and increasing. And little heads and necks are the most frequently injured body parts.
Liquid nicotine Along with the rise of e-cigarettes come refill cartridges, most of which contain concentrated liquid nicotine in flavors such as cherry crush, vanilla and mint. These appealing flavors mask nicotine that can be dangerous to kids. In 2015, poison control centers reported over 3,000 incidents of unintentional nicotine exposure, many of them in children. In comparison, just 271 exposures were reported in 2011.
That worrisome increase prompted the Child Nicotine Poisoning Prevention Act of 2015, signed into law by President Obama on January 28, requiring nicotine cartridges to be packaged in child-proof containers — a no-brainer.
Trampolines Maniacal bouncing is clearly exhilarating for children, but also risky. I say this as a childhood-double-bounce survivor, so I understand the appeal. But just a note of caution: These springy injury machines come with a constellation of scary medical stats. Concussions, broken bones, sprains and neck injuries are signature trampoline troubles. A survey of a national injury database showed that broken bones accounted for 29 percent of all trampoline injuries reported to emergency departments, scientists reported in 2014 in the Journal of Pediatrics Orthopedics. The vast majority (93 percent) of those fractures belonged to children 16 and under.
Attempts to make trampolines safer — by putting a net around the perimeter, for instance — don’t seem to lower injury rates, an Australian study found. That’s why the American Academy of Pediatrics, the Canadian Paediatric Society, the American Academy of Orthopaedic Surgeons and other groups all urge caution, or an outright ban.
WASHINGTON — There’s a long-standing joke that NASA is always 20 years from putting astronauts on Mars. Mission details shared at a recent summit shows that the space agency is right on schedule. A to-do list from 2015 looks remarkably similar to one compiled in 1990. One difference: NASA is now building a rocket and test-driving technologies needed to get a crew to Mars. But the specifics for the longest road trip in history — and what astronauts will do once they arrive — remain an open question.
“Are we going to just send them there to explore and do things that we could do robotically though slower, or can we raise the bar?” asked planetary scientist Jim Bell during the Humans to Mars summit. “We need to make sure that what these folks are being asked to do is worthy of the risk to their lives,” said Bell, of Arizona State University in Tempe. The three-day symposium, which ended May 19, was organized by Explore Mars Inc., a nonprofit dedicated to putting astronauts on Mars by the 2030s.
While the summit didn’t break new scientific ground, it did bring together planetary scientists , space enthusiasts and representatives from both NASA and the aerospace industry to talk about the challenges facing a crewed mission to Mars and rough ideas for how to get there.
Part of the appeal in sending humans is the pace of discovery. Drilling just one hole with the Curiosity rover, which has been exploring Gale Crater on Mars since August 2012 (SN: 5/2/2015, p. 24), currently takes about a week. “It’s a laborious, frustrating, wonderful — frustrating — multiday process,” said Bell.
Humans also can react to novel situations, make quick decisions and see things in a way robotic eyes cannot. “A robot explorer is nowhere near as good as what a human geologist can do,” says Ramses Ramirez, a planetary scientist at Cornell University. “There’s just a lot more freedom.”
Researchers saw the human advantage firsthand in 1997 when they sent a rover called Nomad on a 45-day trek across the Atacama Desert in Chile. Nomad was controlled by operators in the United States to simulate operating a robot on another planet. Humans at the rover site provided a reality check on the data Nomad sent back. “There was a qualitative difference,” says Edwin Kite, a planetary scientist at the University of Chicago. And it wasn’t just that the geologists could do things faster. “The robots were driving past evidence of life that humans were finding very obvious.” To get astronauts ready to explore Mars, the Apollo program is a good template, said Jim Head, a geologist at Brown University who helped train the Apollo astronauts. “Our strategy was called t-cubed: train them, trust them and turn them loose.” While each of the moon expeditions had a plan, the astronauts were trusted to use their judgment. Apollo 15 astronaut David Scott, for example, came across a chunk of deep lunar crust that researchers hoped to find although it wasn’t at a planned stop. “He spotted it three meters away,” said Head. “He saw it shining and recognized it immediately. That’s exploration.”
Despite a lack of clear goals for a jaunt to Mars, NASA is forging ahead. The Orion crew capsule has already been to space once; a 2014 launch atop a Delta IV Heavy rocket sent an uncrewed Orion 5,800 kilometers into space before it splashed down in the Pacific Ocean (SN Online: 12/5/2014). And construction of the Space Launch System, a rocket intended to hurl humans at the moon and Mars, is under way. The first test flight, scheduled for October 2018, will send Orion on a multiday uncrewed trip around the moon. NASA hopes to put astronauts onboard for a lunar orbit in 2021.
Meanwhile, the crew aboard the International Space Station is testing technologies that will keep humans healthy and happy during an interplanetary cruise. Astronaut Scott Kelly recently completed a nearly yearlong visit to the station intended to reveal the effects of long-duration space travel on the human body (SN Online: 2/29/2016). And on April 10, a prototype inflatable habitat — the Bigelow Expandable Activity Module — arrived at the station and was attached to a docking port six days later. The station crew will inflate the module for the first time on May 26. No one will live in it, but over the next two years, astronauts will collect data on how well the habitat handles radiation, temperature extremes and run-ins with space debris. Beyond that, the plans get fuzzy. The general idea is to construct an outpost in orbit around the moon as a testing and staging ground starting in the late 2020s. The first crew to Mars might land on the planet — or might not. One idea is to set up camp in Mars orbit; from there, astronauts could operate robots on the surface without long communication delays. Another idea has humans touching down on one of Mars’ two moons, Phobos or Deimos. When crews do land on the Martian surface, NASA envisions establishing a base from which astronauts could plan expeditions.
With so few details, it’s difficult for the space agency to identify specific technologies to invest in. “There have been lots of studies — we get a lot of grief that it’s nothing but studies,” said Bret Drake, an engineer at the Aerospace Corp. in El Segundo, Calif. “But out of the studies, there are a lot of common things that come to the top no matter what path you take.”
Any mission to Mars has to support astronauts for roughly 500 to 1,000 days. The mission has to deal with round-trip communication delays of up to 42 minutes. It will need the ability to land roughly 40-ton payloads on the surface of Mars (current robotic missions drop about a ton). Living off the land is also key, making use of local water and minerals. And astronauts need the ability to not just survive, but drive around and explore. “We want to land in a safe place, which is going to be geologically boring, but we want to go to exciting locations,” said Drake.
The technical and logistical challenges might be the easiest part. “We do know enough to pull this off,” Ramirez says. “The biggest problem is political will.” Congress has yet to sign off on funding this adventure (nor has NASA presented a budget — expected to be in the hundreds of billions of dollars), and future administrations could decide to kill it.
Multiple summit speakers stressed the importance of using technology that is proven or under development — no exotic engines or rotating artificial gravity habitats for now. And a series of small missions —baby steps to the moon and an asteroid before committing to Mars — could show progress that might help keep momentum (and public interest) alive.
“We thought going to the moon was impossible, but we got there,” says Ramirez. “If we dedicate ourselves as a nation to do something crazy, we’ll do it. I have no doubt.”