Google’s quantum computer reached an error-correcting milestone

To shrink error rates in quantum computers, sometimes more is better. More qubits, that is.

The quantum bits, or qubits, that make up a quantum computer are prone to mistakes that could render a calculation useless if not corrected. To reduce that error rate, scientists aim to build a computer that can correct its own errors. Such a machine would combine the powers of multiple fallible qubits into one improved qubit, called a “logical qubit,” that can be used to make calculations (SN: 6/22/20).

Scientists now have demonstrated a key milestone in quantum error correction. Scaling up the number of qubits in a logical qubit can make it less error-prone, researchers at Google report February 22 in Nature.
Future quantum computers could solve problems impossible for even the most powerful traditional computers (SN: 6/29/17). To build those mighty quantum machines, researchers agree that they’ll need to use error correction to dramatically shrink error rates. While scientists have previously demonstrated that they can detect and correct simple errors in small-scale quantum computers, error correction is still in its early stages (SN: 10/4/21).

The new advance doesn’t mean researchers are ready to build a fully error-corrected quantum computer, “however, it does demonstrate that it is indeed possible, that error correction fundamentally works,” physicist Julian Kelly of Google Quantum AI said in a news briefing February 21.
Logical qubits store information redundantly in multiple physical qubits. That redundancy allows a quantum computer to check if any mistakes have cropped up and fix them on the fly. Ideally, the larger the logical qubit, the smaller the error rate should be. But if the original qubits are too faulty, adding in more of them will cause more problems than it solves.

Using Google’s Sycamore quantum chip, the researchers studied two different sizes of logical qubits, one consisting of 17 qubits and the other of 49 qubits. After making steady improvements to the performance of the original physical qubits that make up the device, the researchers tallied up the errors that still slipped through. The larger logical qubit had a lower error rate, about 2.9 percent per round of error correction, compared to the smaller logical qubit’s rate of about 3.0 percent, the researchers found.
That small improvement suggests scientists are finally tiptoeing into the regime where error correction can begin to squelch errors by scaling up. “It’s a major goal to achieve,” says physicist Andreas Wallraff of ETH Zurich, who was not involved with the research.

However, the result is only on the cusp of showing that error correction improves as scientists scale up. A computer simulation of the quantum computer’s performance suggests that, if the logical qubit’s size were increased even more, its error rate would actually get worse. Additional improvement to the original faulty qubits will be needed to enable scientists to really capitalize on the benefits of error correction.

Still, milestones in quantum computation are so difficult to achieve that they’re treated like pole jumping, Wallraff says. You just aim to barely clear the bar.

This robot automatically tucks its limbs to squeeze through spaces

Inspired by how ants move through narrow spaces by shortening their legs, scientists have built a robot that draws in its limbs to navigate constricted passages.

The robot was able to hunch down and walk quickly through passages that were narrower and shorter than itself, researchers report January 20 in Advanced Intelligent Systems. It could also climb over steps and move on grass, loose rock, mulch and crushed granite.

Such generality and adaptability are the main challenges of legged robot locomotion, says robotics engineer Feifei Qian, who was not involved in the study. Some robots have specialized limbs to move over a particular terrain, but they cannot squeeze into small spaces (SN: 1/16/19).
“A design that can adapt to a variety of environments with varying scales or stiffness is a lot more challenging, as trade-offs between the different environments need to be considered,” says Qian, of the University of Southern California in Los Angeles.

For inspiration, researchers in the new study turned to ants. “Insects are really a neat inspiration for designing robot systems that have minimal actuation but can perform a multitude of locomotion behaviors,” says Nick Gravish, a roboticist at the University of California, San Diego (SN: 8/16/18). Ants adapt their posture to crawl through tiny spaces. And they aren’t perturbed by uneven terrain or small obstacles. For example, their legs collapse a bit when they hit an object, Gravish says, and the ants continue to move forward quickly.

Gravish and colleagues built a short, stocky robot — about 30 centimeters wide and 20 centimeters long — with four wavy, telescoping limbs. Each limb consists of six nested concentric tubes that can draw into each other. What’s more, the limbs do not need to be actively powered or adjusted to change their overall length. Instead, springs that connect the leg segments automatically allow the legs to contract when the robot navigates a narrow space and stretch back out in an open space. The goal was to build mechanically intelligent structures rather than algorithmically intelligent robots.

“It’s likely faster than active control, [which] requires the robot to first sense the contact with the environment, compute the suitable action and then send the command to its motors,” Qian says, about these legs. Removing the sensing and computing components can also make the robots small, cheap and less power hungry.

The robot could modify its body width and height to achieve a larger range of body sizes than other similar robots. The leg segments contracted into themselves to let the robot wiggle through small tunnels and sprawled out when under low ceilings. This adaptability let the robot squeeze into spaces as small as 72 percent its full width and 68 percent its full height.
Next, the researchers plan to actively control the stiffness of the springs that connect the leg segments to tune the motion to terrain type without consuming too much power. “That way, you can keep your leg long when you are moving on open ground or over tall objects, but then collapse down to the smallest possible shape in confined spaces,” Gravish says.
Such small-scale, minimal robots are easy to produce and can be quickly tweaked to explore complex environments. However, despite being able to walk across different terrains, these robots are, for now, too fragile for search-and-rescue, exploration or biological monitoring, Gravish says.

The new robot takes a step closer to those goals, but getting there will take more than just robotics, Qian says. “To actually achieve these applications would require an integration of design, control, sensing, planning and hardware advancement.”

But that’s not Gravish’s interest. Instead, he wants to connect these experiments back to what was observed in the ants originally and use the robots to ask more questions about the rules of locomotion in nature (SN: 1/16/20).

“I really would like to understand how small insects are able to move so rapidly across certain unpredictable terrain,” he says. “What is special about their limbs that enables them to move so quickly?”

The Kuiper Belt’s dwarf planet Quaoar hosts an impossible ring

The dwarf planet Quaoar has a ring that is too big for its metaphorical fingers. While all other rings in the solar system lie within or near a mathematically determined distance of their parent bodies, Quaoar’s ring is much farther out.

“For Quaoar, for the ring to be outside this limit is very, very strange,” says astronomer Bruno Morgado of the Federal University of Rio de Janeiro. The finding may force a rethink of the rules governing planetary rings, Morgado and colleagues say in a study published February 8 in Nature.
Quaoar is an icy body about half the size of Pluto that’s located in the Kuiper Belt at the solar system’s edge (SN: 8/23/22). At such a great distance from Earth, it’s hard to get a clear picture of the world.

So Morgado and colleagues watched Quaoar block the light from a distant star, a phenomenon called a stellar occultation. The timing of the star winking in and out of view can reveal details about Quaoar, like its size and whether it has an atmosphere.

The researchers took data from occultations from 2018 to 2020, observed from all over the world, including Namibia, Australia and Grenada, as well as space. There was no sign that Quaoar had an atmosphere. But surprisingly, there was a ring. The finding makes Quaoar just the third dwarf planet or asteroid in the solar system known to have a ring, after the asteroid Chariklo and the dwarf planet Haumea (SN: 3/26/14; SN: 10/11/17).

Even more surprisingly, “the ring is not where we expect,” Morgado says.
Known rings around other objects lie within or near what’s called the Roche limit, an invisible line where the gravitational force of the main body peters out. Inside the limit, that force can rip a moon to shreds, turning it into a ring. Outside, the gravity between smaller particles is stronger than that from the main body, and rings will coalesce into one or several moons.

“We always think of [the Roche limit] as straightforward,” Morgado says. “One side is a moon forming, the other side is a ring stable. And now this limit is not a limit.”

For Quaoar’s far-out ring, there are a few possible explanations, Morgado says. Maybe the observers caught the ring at just the right moment, right before it turns into a moon. But that lucky timing seems unlikely, he notes.

Maybe Quaoar’s known moon, Weywot, or some other unseen moon contributes gravity that holds the ring stable somehow. Or maybe the ring’s particles are colliding in such a way that they avoid sticking together and clumping into moons.

The particles would have to be particularly bouncy for that to work, “like a ring of those bouncy balls from toy stores,” says planetary scientist David Jewitt of UCLA, who was not involved in the new work.

The observation is solid, says Jewitt, who helped discover the first objects in the Kuiper Belt in the 1990s. But there’s no way to know yet which of the explanations is correct, if any, in part because there are no theoretical predictions for such far-out rings to compare with Quaoar’s situation.

That’s par for the course when it comes to the Kuiper Belt. “Everything in the Kuiper Belt, basically, has been discovered, not predicted,” Jewitt says. “It’s the opposite of the classical model of science where people predict things and then confirm or reject them. People discover stuff by surprise, and everyone scrambles to explain it.”

More observations of Quaoar, or more discoveries of seemingly misplaced rings elsewhere in the solar system, could help reveal what’s going on.

“I have no doubt that in the near future a lot of people will start working with Quaoar to try to get this answer,” Morgado says.

Muon scanning hints at mysteries within an ancient Chinese wall

For nearly 650 years, the fortress walls in the Chinese city of Xi’an have served as a formidable barrier around the central city. At 12 meters high and up to 18 meters thick, they are impervious to almost everything — except subatomic particles called muons.

Now, thanks to their penetrating abilities, muons may be key to ensuring that the walls that once protected the treasures of the first Ming Dynasty — and are now a national architectural treasure in their own right — stand for centuries more.

A refined detection method has provided the highest-resolution muon scans yet produced of any archaeological structure, researchers report in the Jan. 7 Journal of Applied Physics. The scans revealed interior density fluctuations as small as a meter across inside one section of the Xi’an ramparts. The fluctuations could be signs of dangerous flaws or “hidden structures archaeologically interesting for discovery and investigation,” says nuclear physicist Zhiyi Liu of Lanzhou University in China.
Muons are like electrons, only heavier. They rain down all over the planet, produced when charged particles called cosmic rays hit the atmosphere. Although muons can travel deep into earth and stone, they are scattered or absorbed depending on the material they encounter. Counting the ones that pass through makes them useful for studying volcano interiors, scanning pyramids for hidden chambers and even searching for contraband stashed in containers impervious to X-rays (SN: 4/22/22).

Though muons stream down continuously, their numbers are small enough that the researchers had to deploy six detectors for a week at a time to collect enough data for 3-D scans of the rampart.

It’s now up to conservationists to determine how to address any density fluctuations that might indicate dangerous flaws, or historical surprises, inside the Xi’an walls.

Chicken DNA is replacing the genetics of their ancestral jungle fowl

Today’s red jungle fowl — the wild forebears of the domesticated chicken — are becoming more chickenlike. New research suggests that a large proportion of the wild fowl’s DNA has been inherited from chickens, and relatively recently.

Ongoing interbreeding between the two birds may threaten wild jungle fowl populations’ future, and even hobble humans’ ability to breed better chickens, researchers report January 19 in PLOS Genetics.

Red jungle fowl (Gallus gallus) are forest birds native to Southeast Asia and parts of South Asia. Thousands of years ago, humans domesticated the fowl, possibly in the region’s rice fields (SN: 6/6/22).
“Chickens are arguably the most important domestic animal on Earth,” says Frank Rheindt, an evolutionary biologist at the National University of Singapore. He points to their global ubiquity and abundance. Chicken is also one of the cheapest sources of animal protein that humans have.

Domesticated chickens (G. gallus domesticus) were known to be interbreeding with jungle fowl near human settlements in Southeast Asia. Given the unknown impacts on jungle fowl and the importance of chickens to humankind, Rheindt and his team wanted to gather more details. Wild jungle fowl contain a store of genetic diversity that could serve as a crucial resource for breeding chickens resistant to diseases or other threats.

The researchers analyzed and compared the genomes — the full complement of an organism’s DNA — of 63 jungle fowl and 51 chickens from across Southeast Asia. Some of the jungle fowl samples came from museum specimens collected from 1874 through 1939, letting the team see how the genetic makeup of jungle fowl has changed over time.

Over the last century or so, wild jungle fowl’s genomes have become increasingly similar to chickens’. Between about 20 and 50 percent of the genomes of modern jungle fowl originated in chickens, the team found. In contrast, many of the roughly 100-year-old jungle fowl had a chicken-ancestry share in the range of a few percent.

The rapid change probably comes from human communities expanding into the region’s wilderness, Rheindt says. Most modern jungle fowl live in close vicinity to humans’ free-ranging chickens, with which they frequently interbreed.

Such interbreeding has become “almost the norm now” for any globally domesticated species, Rheindt says, such as dogs hybridizing with wolves and house cats crossing with wildcats. Pigs, meanwhile, are mixing with wild boars and ferrets with polecats.
Wild populations that interbreed with their domesticated counterparts could pick up physical or behavioral traits that change how the hybrids function in their ecosystem, says Claudio Quilodrán, a conservation geneticist at the University of Geneva not involved with this research.

The effect is likely to be negative, Quilodrán says, since some of the traits coming into the wild population have been honed for human uses, not for survival in the local environment.

Wild jungle fowl have lost their genetic diversity as they’ve interbred too. The birds’ heterozygosity — a measure of a population’s genetic diversity — is now just a tenth of what it was a century ago.

“This result is initially counterintuitive,” Rheindt says. “If you mix one population with another, you would generally expect a higher genetic diversity.”

But domesticated chickens have such low genetic diversity that certain versions of jungle fowl genes are being swept out of the population by a tsunami of genetic homogeneity. The whittling down of these animals’ genetic toolkit may leave them vulnerable to conservation threats.

“Having lots of genetic diversity within a species increases the chance that certain individuals contain the genetic background to adapt to a varied range of different environmental changes and diseases,” says Graham Etherington, a computational biologist at the Earlham Institute in Norwich, England, who was not involved with this research.

A shallower jungle fowl gene pool could also mean diminished resources for breeding better chickens. The genetics of wild relatives are sometimes used to bolster the disease or pest resistance of domesticated crop plants. Jungle fowl genomes could be similarly valuable for this reason.

“If this trend continues unabated, future human generations may only be able to access the entirety of ancestral genetic diversity of chickens in the form of museum specimens,” Rheindt says, which could hamper chicken breeding efforts using the wild fowl genes.

Some countries such as Singapore, Rheindt says, have started managing jungle fowl populations to reduce interbreeding with chickens.

Procrastination may harm your health. Here’s what you can do

The worst procrastinators probably won’t be able to read this story. It’ll remind them of what they’re trying to avoid, psychologist Piers Steel says.

Maybe they’re dragging their feet going to the gym. Maybe they haven’t gotten around to their New Year’s resolutions. Maybe they’re waiting just one more day to study for that test.

Procrastination is “putting off to later what you know you should be doing now,” even if you’ll be worse off, says Steel, of the University of Calgary in Canada. But all those tasks pushed to tomorrow seem to wedge themselves into the mind — and it may be harming people’s health.
In a study of thousands of university students, scientists linked procrastination to a panoply of poor outcomes, including depression, anxiety and even disabling arm pain. “I was surprised when I saw that one,” says Fred Johansson, a clinical psychologist at Sophiahemmet University in Stockholm. His team reported the results January 4 in JAMA Network Open.

The study is one of the largest yet to tackle procrastination’s ties to health. Its results echo findings from earlier studies that have gone largely ignored, says Fuschia Sirois, a behavioral scientist at Durham University in England, who was not involved with the new research.

For years, scientists didn’t seem to view procrastination as something serious, she says. The new study could change that. “It’s that kind of big splash that’s … going to get attention,” Sirois says. “I’m hoping that it will raise awareness of the physical health consequences of procrastination.”

Procrastinating may be bad for the mind and body
Whether procrastination harms health can seem like a chicken-and-egg situation.

It can be hard to tell if certain health problems make people more likely to procrastinate — or the other way around, Johansson says. (It may be a bit of both.) And controlled experiments on procrastination aren’t easy to do: You can’t just tell a study participant to become a procrastinator and wait and see if their health changes, he says.
Many previous studies have relied on self-reported surveys taken at a single time point. But a snapshot of someone makes it tricky to untangle cause and effect. Instead, in the new study, about 3,500 students were followed over nine months, so researchers could track whether procrastinating students later developed health issues.

On average, these students tended to fare worse over time than their prompter peers. They were slightly more stressed, anxious, depressed and sleep-deprived, among other issues, Johansson and colleagues found. “People who score higher on procrastination to begin with … are at greater risk of developing both physical and psychological problems later on,” says study coauthor Alexander Rozental, a clinical psychologist at Uppsala University in Sweden. “There is a relationship between procrastination at one time point and having these negative outcomes at the later point.”

The study was observational, so the team can’t say for sure that procrastination causes poor health. But results from other researchers also seem to point in this direction. A 2021 study tied procrastinating at bedtime to depression. And a 2015 study from Sirois’ lab linked procrastinating to poor heart health.

Stress may be to blame for procrastination’s ill effects, data from Sirois’ lab and other studies suggest. She thinks that the effects of chronic procrastinating could build up over time. And though procrastination alone may not cause disease, Sirois says, it could be “one extra factor that can tip the scales.”

No, procrastinators are not lazy
Some 20 percent of adults are estimated to be chronic procrastinators. Everyone might put off a task or two, but chronic procrastinators make it their lifestyle, says Joseph Ferrari, a psychologist at DePaul University in Chicago, who has been studying procrastination for decades. “They do it at home, at school, at work and in their relationships.” These are the people, he says, who “you know are going to RSVP late.”

Though procrastinators may think they perform better under pressure, Ferrari has reported the opposite. They actually worked more slowly and made more errors than non-procrastinators, his experiments have shown. And when deadlines are slippery, procrastinators tend to let their work slide, Steel’s team reported last year in Frontiers in Psychology.

For years, researchers have focused on the personalities of people who procrastinate. Findings vary, but some scientists suggest procrastinators may be impulsive, worriers and have trouble regulating their emotions. One thing procrastinators are not, Ferrari emphasizes, is lazy. They’re actually “very busy doing other things than what they’re supposed to be doing,” he says.

In fact, Rozental adds, most research today suggests procrastination is a behavioral pattern.

And if procrastination is a behavior, he says, that means it’s something you can change, regardless of whether you’re impulsive.

Why procrastinators should be kind to themselves
When people put off a tough task, they feel good — in the moment.
Procrastinating is a way to sidestep the negative emotions linked to the task, Sirois says. “We’re sort of hardwired to avoid anything painful or difficult,” she says. “When you procrastinate, you get immediate relief.” A backdrop of stressful circumstances — say, a worldwide pandemic — can strain people’s ability to cope, making procrastinating even easier. But the relief it provides is only temporary, and many seek out ways to stop dawdling.

Researchers have experimented with procrastination treatments that run the gamut from the logistical to the psychological. What works best is still under investigation. Some scientists have reported success with time-management interventions. But the evidence for that “is all over the map,” Sirois says. That’s because “poor time management is a symptom not a cause of procrastination,” she adds.

For some procrastinators, seemingly obvious tips can work. In his clinical practice, Rozental advises students to simply put down their smartphones. Silencing notifications or studying in the library rather than at home can quash distractions and keep people on task. But that won’t be enough for many people, he says.

Hard-core procrastinators may benefit from cognitive behavioral therapy. In a 2018 review of procrastination treatments, Rozental found that this type of therapy, which involves managing thoughts and emotions and trying to change behavior, seemed to be the most helpful. Still, not many studies have examined treatments, and there’s room for improvement, he says.

Sirois also favors an emotion-centered approach. Procrastinators can fall into a shame spiral where they feel uneasy about a task, put the task off, feel ashamed for putting it off and then feel even worse than when they started. People need to short-circuit that loop, she says. Self-forgiveness may help, scientists suggested in one 2020 study. So could mindfulness training.

In a small trial of university students, eight weekly mindfulness sessions reduced procrastination, Sirois and colleagues reported in the January Learning and Individual Differences. Students practiced focusing on the body, meditating during unpleasant activities and discussed the best way to take care of themselves. A little self-compassion may snap people out of their spiral, Sirois says.

“You made a mistake and procrastinated. It’s not the end of the world,” she says. “What can you do to move forward?”

A supernova’s delayed reappearance could pin down how fast the universe expands

A meandering trek taken by light from a remote supernova in the constellation Cetus may help researchers pin down how fast the universe expands — in another couple of decades.

About 10 billion years ago, a star exploded in a far-off galaxy named MRG-M0138. Some of the light from that explosion later encountered a gravitational lens, a cluster of galaxies whose gravity bent the light so that we see multiple images. In 2016, the supernova appeared in Earth’s sky as three distinct points of light, each marking three different paths the light took to get here.

Now, researchers predict that the supernova will appear again in the late 2030s. The time delay — the longest ever seen from a gravitationally lensed supernova — could provide a more precise estimate for the distance to the supernova’s host galaxy, the team reports September 13 in Nature Astronomy. And that, in turn, may let astronomers refine estimates of the Hubble constant, the parameter that describes how fast the universe expands.

The original three points of light appeared in images from the Hubble Space Telescope. “It was purely an accident,” says astronomer Steve Rodney of the University of South Carolina in Columbia. Three years later, when Hubble reobserved the galaxy, astronomer Gabriel Brammer at the University of Copenhagen discovered that all three points of light had vanished, indicating a supernova.
By calculating how the intervening cluster’s gravity alters the path the supernova’s light rays take, Rodney and his colleagues predict that the supernova will appear again in 2037, give or take a couple of years. Around that time, Hubble may burn up in the atmosphere, so Rodney’s team dubs the supernova “SN Requiem.”

“It’s a requiem for a dying star and a sort of elegy to the Hubble Space Telescope itself,” Rodney says. A fifth point of light, too faint to be seen, may also arrive around 2042, the team calculates.、
The predicted 21-year time delay — from 2016 to 2037 — is a record for a supernova. In contrast, the first gravitational lens ever found — twin images of a quasar spotted in 1979 — has a time delay of only 1.1 years (SN: 11/10/1979).

Not everyone agrees with Rodney’s forecast. “It is very difficult to predict what the time delay will be,” says Rudolph Schild, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who was the first to measure the double quasar’s time delay. The distribution of dark matter in the galaxy hosting the supernova and the cluster splitting the supernova’s light is so uncertain, Schild says, that the next image of SN Requiem could come outside the years Rodney’s team has specified.

In any case, when the supernova image does appear, “that would be a phenomenally precise measurement” of the time delay, says Patrick Kelly, an astronomer at the University of Minnesota in Minneapolis who was not involved with the new work. That’s because the uncertainty in the time delay will be tiny compared with the tremendous length of the time delay itself.

That delay, coupled with an accurate description of how light rays weave through the galaxy cluster, could affect the debate over the Hubble constant. Numerically, the Hubble constant is the speed a distant galaxy recedes from us divided by the distance to that galaxy. For a given galaxy with a known speed, a larger estimated distance therefore leads to a lower number for the Hubble constant.

This number was once in dispute by a factor of two. Today the range is much tighter, from 67 to 73 kilometers per second per megaparsec. But that spread still leaves the universe’s age uncertain. The frequently quoted age of 13.8 billion years corresponds to a Hubble constant of 67.4. But if the Hubble constant is higher, then the universe could be about a billion years younger.

The longer it takes for SN Requiem to reappear, the farther from Earth the host galaxy is — which means a lower Hubble constant and an older universe. So if the debate over the Hubble constant persists into the 2030s, the exact date the supernova springs back to life could help resolve the dispute and nail down a fundamental cosmological parameter.

NASA’s Perseverance rover snagged its first Martian rock samples

The Perseverance rover has captured its first two slices of Mars.

NASA’s latest Mars rover drilled into a flat rock nicknamed Rochette on September 1 and filled a roughly finger-sized tube with stone. The sample is the first ever destined to be sent back to Earth for further study. On September 7, the rover snagged a second sample from the same rock. Both are now stored in airtight tubes inside the rover’s body.

Getting pairs of samples from every rock it drills is “a little bit of an insurance policy,” says deputy project scientist Katie Stack Morgan of NASA’s Jet Propulsion Lab in Pasadena, Calif. It means the rover can drop identical stores of samples in two different places, boosting chances that a future mission will be able to pick up at least one set.

The successful drilling is a comeback story for Perseverance. The rover’s first attempt to take a bit of Mars ended with the sample crumbling to dust, leaving an empty tube (SN: 8/19/21). Scientists think that rock was too soft to hold up to the drill.
Nevertheless, the rover persevered.

“Even though some of its rocks are not, Mars is hard,” said Lori Glaze, director of NASA’s planetary science division, in a September 10 news briefing.

Rochette is a hard rock that appears to have been less severely eroded by millennia of Martian weather (SN: 7/14/20). (Fun fact: All the rocks Perseverance drills into will get names related to national parks; the region on Mars the rover is now exploring is called Mercantour, so the name Rochette — or “Little Rock” — comes from a village in France near Mercantour National Park.)

Rover measurements of the rock’s texture and chemistry suggests that it’s made of basalt and may have been part of an ancient lava flow. That’s useful because volcanic rocks preserve their ages well, Stack Morgan says. When scientists on Earth get their hands on the sample, they’ll be able to use the concentrations of certain elements and isotopes to figure out exactly how old the rock is — something that’s never been done for a pristine Martian rock.

Rochette also contains salt minerals that probably formed when the rock interacted with water over long time periods. That could suggest groundwater moving through the Martian subsurface, maybe creating habitable environments within the rocks, Stack Morgan says.

“It really feels like this rich treasure trove of information for when we get this sample back,” Stack Morgan says.

Once a future mission brings the rocks back to Earth, scientists can search inside those salts for tiny fluid bubbles that might be trapped there. “That would give us a glimpse of Jezero crater at the time when it was wet and was able to sustain ancient Martian life,” said planetary scientist Yulia Goreva of JPL at the news briefing.

Scientists will have to be patient, though — the earliest any samples will make it back to Earth is 2031. But it’s still a historic milestone, says planetary scientist Meenakshi Wadhwa of Arizona State University in Tempe.

“These represent the beginning of Mars sample return,” said Wadhwa said at the news briefing. “I’ve dreamed of having samples back from Mars to analyze in my lab since I was a graduate student. We’ve talked about Mars sample return for decades. Now it’s starting to actually feel real.”

UEFA Champions League draw: Date, teams qualified, seeds, rules for Round of 16

The complete field of 16 teams that will advance to the 2021-22 UEFA Champions League knockout rounds has not yet been finalized, but we already have several clubs that have booked their spots.

European giants Liverpool, Ajax, Bayern Munich and Juventus were the first four teams to clinch on Matchday 4 of the group stage, while Manchester United and Chelsea joined them on Matchday 5.
Only the top two teams in each group advance, and there's incentive to win the group when it comes to the Round of 16 draw on Monday, Dec. 13. The first-place team from each group will be seeded, and their Round of 16 opponent will be drawn from a pot of the second-place finishers.

Champions League Round of 16 qualifiers
Group 1st Place 2nd Place
Grp A — —
Grp B Liverpool —
Grp C Ajax —
Grp D — —
Grp E Bayern Munich —
Grp F Manchester United —
Grp G — —
Grp H Chelsea / Juventus Chelsea / Juventus
When is the Champions League Round of 16 draw?
The Round of 16 draw will be held on Dec. 13 at 6 a.m. ET from the UEFA headquarters in Switzerland. It will be streamed by UEFA.com.

The eight group winners will be seeded for purposes of the draw. They will make up one pot, while the other pot will contain the runners-up from each group.

The two key details to remember for this Round of 16 draw:

Teams from the same country cannot be drawn against one another (see table below);
The group winners (i.e. seeded teams) will host the second leg of each Round of 16 series. This is perceived to be an advantage because, if an extra-time session or penalty-kick shootout is needed, it would happen on home soil.
Knockout round qualifiers by country
Nation Total Clubs Clubs
England 3 Chelsea, Liverpool, Manchester United
Germany 1 Bayern Munich
Italy 1 Juventus
Netherlands 1 Ajax Amsterdam
The two legs of the Round of 16 will be spread over eight days between February and March. The second leg of each series will take place three weeks after the first leg.

The eight teams left standing will participate in a quarterfinal draw on March 18, 2022, which will determine the rest of the Champions League bracket through the final in Saint Petersburg on May 28. There are no seedings involved in this draw, and unlike the Round of 16, teams from the same country can be drawn against one another.

Champions League Round of 16 schedule
Round of 16, 1st Legs
Date Match Time (ET) TV channels Stream
Feb. 15 Round of 16 #1 3 p.m. TBD fuboTV, Paramount+
Feb. 15 Round of 16 #2 3 p.m. TBD fuboTV, Paramount+
Feb. 16 Round of 16 #3 3 p.m. TBD fuboTV, Paramount+
Feb. 16 Round of 16 #4 3 p.m. TBD fuboTV, Paramount+
Feb. 22 Round of 16 #5 3 p.m. TBD fuboTV, Paramount+
Feb. 22 Round of 16 #6 3 p.m. TBD fuboTV, Paramount+
Feb. 23 Round of 16 #7 3 p.m. TBD fuboTV, Paramount+
Feb. 23 Round of 16 #8 3 p.m. TBD fuboTV, Paramount+
Round of 16, 2nd Legs
Date Match Time (ET) TV channels Stream
March 8 Round of 16 #1 3 p.m. TBD fuboTV, Paramount+
March 8 Round of 16 #2 3 p.m. TBD fuboTV, Paramount+
March 9 Round of 16 #3 3 p.m. TBD fuboTV, Paramount+
March 9 Round of 16 #4 3 p.m. TBD fuboTV, Paramount+
March 15 Round of 16 #5 3 p.m. TBD fuboTV, Paramount+
March 15 Round of 16 #6 3 p.m. TBD fuboTV, Paramount+
March 16 Round of 16 #7 3 p.m. TBD fuboTV, Paramount+
March 16 Round of 16 #8 3 p.m. TBD fuboTV, Paramount+
Who will win the UEFA Champions League 2021-22?
As the tournament progresses, the oddsmakers are constantly adjusting the future prices for each team when it comes to winning the Champions League. Here are the latests odds courtesy of U.S.-based DraftKings (asterisk denotes teams that have already qualified for the Round of 16):

Champions League outright winner odds
Team Nov. 23
Manchester City +300
Bayern Munich* +350
PSG +500
Liverpool* +550
Chelsea* +600
Manchester United* +1200
Ajax* +2000
Real Madrid +2200
Atletico Madrid +3500
Juventus* +3500
Inter Milan +5000
B. Dortmund +5000
Barcelona +5000
Atalanta +10000
Porto +15000
Benfica +15000
Villarreal +15000
RB Salzburg +15000
Sevilla +20000
Wolfsburg +30000
Lille +50000
Club Brugge +80000
Sporting CP +100000
UEFA Champions League 2021-2022: Tournament format
The 2021-2022 edition of the UEFA Champions League features a familiar format — and one massive new twist.

As usual, the tournament started out with a group stage (eight groups of four teams each), and only the top two finishers in each group advance to the Round of 16 that kicks off in February 2022. Two-leg, aggregate-goal knockout rounds are played the rest of the way through to the single game final that will be held in Russia on May 28, 2022.

Group Stage: Sept. 14-15, Sept. 28-29, Oct. 19-20, Nov. 2-3, Nov. 23-24, Dec. 7-8
Round of 16: Feb. 15-16, March 8-9 / Feb. 22-23, March 15-16
Quarterfinals: April 5-6, April 12-13
Semifinals: April 26-27, May 3-4
Final: May 28, 2022 (St. Petersburg, Russia)
No away goals tiebreaker in Champions League
Here's that twist: For the first time since 1965, there will be no away goals tiebreaker used in the knockout rounds of UEFA competitions, including the Champions League, after it was abolished in June 2021.

Series that are tied on aggregate goals after the conclusion of the second leg will go straight to extra time and, if necessary, a penalty-kick shootout.

How to watch the UEFA Champions League
The 2021-22 UEFA Champions League will be carried in the United States by CBS (English) and Univision (Spanish) across a number of TV and streaming platforms.

CBS Sports will have live pregame, halftime and postgame studio shows, which will air on CBS Sports Network and stream on Paramount+. Also back this year is the RedZone-like whip-around show called "The Golazo Show," also on CBS Sports Network and Paramount+, with all the goals and best chances from the concurrent matches.

Univision will mirror that coverage with its own pregame and postgame shows. Its whip-around show is called "Zona Fútbol."

Nearly every Champions League match is available to be streamed on fuboTV, which offers a free seven-day trial to new subscribers. The streaming platform carries all the Univision family of channels: Univision, TUDN, UniMas, Galavision and TUDNxtra.

Univision will stream select matches on its ad-supported platform PrendeTV, which is available free of charge across mobile and connected TV devices, Amazon Fire TV, Apple (iOS and tvOS), Google (Android phones and TV devices), Roku, and via the web on Prende.tv.

LeBron James: How did the Lakers star look in his return from injury in Boston?

The King is back. 

LeBron James returned from an almost three-week absence for the Los Angeles Lakers against the Boston Celtics on Friday night. James had been out of the Lakers lineup since November 2, missing the team's past seven games with an abdominal strain.

He was listed as a game-time decision with the team announcing he would play just before tip-off. 

Prior to his injury, James was averaging 24.8 points - his lowest scoring average since his rookie season - while also averaging his least amount of rebounds (5.5) also since his rookie campaign and his least amount of assists (7.0) since 2015-16. Most concerning was his shooting percentage (46.7 percent) which was also his lowest since 2003-04.

James played 32 minutes against Boston, and looked like his old self for large parts of the contest, hitting fadeaways, and taking it strong to the basket and absorbing contact. 

He finished with 23 points (10-for-16 from the field), six rebounds, two assists and two steals before exiting the game for good with 4:26 left in the final quarter. 

He played 32 minutes and recorded a team-best plus-minus of -4, among Lakers players to have logged more than 20 minutes.

"Felt okay," James said postgame. "Felt like a rookie again being away from the game."

With the 130-108 loss, the Lakers have dropped to 8-9 for the season and 4-3 in games when James suits up.