Why experts recommend ditching racial labels in genetic studies

Race should no longer be used to describe populations in most genetics studies, a panel of experts says.

Using race and ethnicity to describe study participants gives the mistaken impression that humans can be divided into distinct groups. Such labels have been used to stigmatize groups of people, but do not explain biological and genetic diversity, the panel convened by the U.S. National Academies of Sciences, Engineering and Medicine said in a report on March 14.
In particular, the term Caucasian should no longer be used, the committee recommends. The term, coined in the 18th century by German scientist Johann Friedrich Blumenbach to describe what he determined was the most beautiful skull in his collection, carries the false notion of white superiority, the panel says.

Worse, the moniker “has also acquired today the connotation of being an objective scientific term, and that’s what really led the committee to take objection with it,” says Ann Morning, a sociologist at New York University and a member of the committee that wrote the report. “It tends to reinforce this erroneous belief that racial categories are somehow objective and natural characterizations of human biological difference. We felt that it was a term that … should go into the dustbin of history.”

Similarly, the term “black race” shouldn’t be used because it implies that Black people are a distinct group, or race, that can be objectively defined, the panel says.

Racial definitions are problematic “because not only are they stigmatizing, they are historically wrong,” says Ambroise Wonkam, a medical geneticist at Johns Hopkins University and president of the African Society of Human Genetics. Race is often used as a proxy for genetic diversity. But “race cannot be used to capture diversity at all. Race doesn’t exist. There is only one race, the human race,” says Wonkam, who was not involved with the National Academies’ panel.

Race might be used in some studies to determine how genetic and social factors contribute to health disparities (SN: 4/5/22), but beyond that race has no real value in genetic research, Wonkam adds.

Researchers could use other identifiers, including geographical ancestry, to define groups of people in the study, Wonkam says. But those definitions need to be precise.

For instance, some researchers group Africans by language groups. But a Bantu-speaking person from Tanzania or Nigeria where malaria is endemic would have a much higher genetic risk of sickle cell disease than a Bantu-speaking person whose ancestors are from South Africa, where malaria has not existed for at least 1,000 years. (Changes in genes that make hemoglobin can protect against malaria (SN: 5/2/11), but cause life-threatening sickle cell disease.)
Genetic studies also have to account for movements of people and mixture between multiple groups, Wonkam says. And labeling must be consistent for all groups in the study, he says. Current studies sometimes compare continent-wide racial groups, such as Asian, with national groups, such as French or Finnish, and ethnic groups, such as Hispanic.

An argument for keeping race in rare cases
Removing race as a descriptor may be helpful for some groups, such as people of African descent, says Joseph Yracheta, a health disparities researcher and the executive director of the Native BioData Consortium, headquartered on the Cheyenne River Sioux reservation in South Dakota. “I understand why they want to get rid of race science for themselves, because in their case it’s been used to deny them services,” he says.

But Native Americans’ story is different, says Yracheta, who was not part of the panel. Native Americans’ unique evolutionary history have made them a valuable resource for genetics research. A small starting population and many thousands of years of isolation from humans outside the Americas have given Native Americans and Indigenous people in Polynesia and Australia some genetic features that may make it easier for researchers to find variants that contribute to health or disease, he says. “We’re the Rosetta stone for the rest of the planet.”

Native Americans “need to be protected, because not only are our numbers small, but we keep having things taken away from us since 1492. We don’t want this to be another casualty of colonialism.” Removing the label of Indigenous or Native American may erode tribal sovereignty and control over genetic data, he says.

The panel does recommend that genetic researchers should clearly state why they used a particular descriptor and should involve study populations in making decisions about which labels to use.

That community input is essential, Yracheta says. The recommendations have no legal or regulatory weight. So he worries that this lack of teeth may allow researchers to ignore the wishes of study participants without fear of penalty.

Still seeking diversity in research participants
Genetics research has suffered from a lack of diversity of participants (SN: 3/4/21). To counteract the disparities, U.S. government regulations require researchers funded by the National Institutes of Health to collect data on the race and ethnicity of study participants. But because those racial categories are too broad and don’t consider the social and environmental conditions that may affect health, the labels are not helpful in most genetic analyses, the panel concluded.

Removing racial labels won’t hamper diversity efforts, as researchers will still seek out people from different backgrounds to participate in studies, says Brendan Lee, who is president of the American Society of Human Genetics. But taking race out of the equation should encourage researchers to think more carefully about the type of data they are collecting and how it might be used to support or refute racism, says Lee, a medical geneticist at Baylor College of Medicine in Houston, who was not part of the panel.

The report offers decision-making tools for determining what descriptors are appropriate for particular types of studies. But “while it is a framework, it is not a recipe where in every study we do A, B and C,” Lee says.

Researchers probably won’t instantly adopt the new practices, Lee says. “It is a process that will take time. I don’t think it is something we can expect in one week or one evening that we’ll all change over to this, but it is a very important first step.”

Saturn’s rings paint some of its moons shades of blue and red

Saturn’s rings are painting its innermost moons.

Data from NASA’s now-defunct Cassini spacecraft show that five odd-shaped moons embedded in Saturn’s rings are different colors, and that the hues come from the rings themselves, researchers report. That observation could help scientists figure out how the moons were born.

“The ring moons and the rings themselves are kind of one and the same,” says planetary scientist Bonnie Buratti of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “For as long as the moons have existed, they’ve been accreting particles from the rings.”
Saturn has more than 60 moons, but those nearest to the planet interact closely with its main band of rings. Between December 2016 and April 2017, Cassini passed close to five of these ring-dwelling moons: ravioli-shaped Pan and Atlas (SN Online: 3/10/17), ring-sculpting Daphnis and Pandora (SN: 9/2/17, p. 16) and potato-shaped Epimetheus. The flybys brought Cassini between two and 10 times closer to the moons than it had ever been, before the spacecraft deliberately crashed into Saturn in September 2017 (SN Online: 9/15/17).

Examining those close-ups, Buratti and her colleagues noticed that the moons’ colors vary depending on the objects’ distances from Saturn. And the moon hues are similar to the colors of the rings that the objects are closest to, the team reports online March 28 in Science.
Close-in Pan was the reddest moon, while the farthest-out Epimetheus was the bluest. The researchers think the red material comes from Saturn’s dense main rings, and mostly consists of organics and iron (SN Online: 10/4/18). The blue material is probably water ice from Saturn’s more distant E ring, which is created by plumes erupting from the larger, icy moon Enceladus.
The team thinks that the rings are continually depositing material onto the moons. “It’s an ongoing process,” Buratti says. She notes that “skirts” of material at Atlas and Pan’s equators are probably made of accreted ring debris, too.

The overall similarity between the moons and rings led the researchers to conclude that these small moons are leftover shards of a destructive event that created the rings in the first place. But it’s unknown whether that event was a collision between long-gone, larger moons, the shredding of one moon by Saturn’s gravity, or some other occurrence (SN: 1/20/18, p. 7).

Saturn, its rings and its moons are “very dynamic,” says planetary scientist Matija Ćuk of the SETI Institute in Mountain View, Calif. The idea that the rings are still shedding material onto the moons today “sounds perfectly reasonable.” He isn’t sure the moons formed at the same time as the rings, though. It’s possible “they formed from the rings since that catastrophic event,” he says.

One Antarctic ice shelf gets half its annual snowfall in just 10 days

Just a few powerful storms in Antarctica can have an outsized effect on how much snow parts of the southernmost continent get. Those ephemeral storms, preserved in ice cores, might give a skewed view of how quickly the continent’s ice sheet has grown or shrunk over time.

Relatively rare extreme precipitation events are responsible for more than 40 percent of the total annual snowfall across most of the continent — and in some places, as much as 60 percent, researchers report March 22 in Geophysical Research Letters.
Climatologist John Turner of the British Antarctic Survey in Cambridge and his colleagues used regional climate simulations to estimate daily precipitation across the continent from 1979 to 2016. Then, the team zoomed in on 10 locations — representing different climates from the dry interior desert to the often snowy coasts and the open ocean — to determine regional differences in snowfall.

While snowfall amounts vary greatly by location, extreme events packed the biggest wallop along Antarctica’s coasts, especially on the floating ice shelves, the researchers found. For instance, the Amery ice shelf in East Antarctica gets roughly half of its annual precipitation — which typically totals about half a meter of snow — in just 10 days, on average. In 1994, the ice shelf got 44 percent of its entire annual precipitation on a single day in September.

Ice cores aren’t just a window into the past; they are also used to predict the continent’s future in a warming world. So characterizing these coastal regions is crucial for understanding Antarctica’s ice sheet — and its potential future contribution to sea level rise.
Editor’s note: This story was updated April 5, 2019, to correct that the results were reported March 22 (not March 25).

‘Ghost Particle’ chronicles the neutrino’s discovery and what’s left to learn

We live in a sea of neutrinos. Every second, trillions of them pass through our bodies. They come from the sun, nuclear reactors, collisions of cosmic rays hitting Earth’s atmosphere, even the Big Bang. Among fundamental particles, only photons are more numerous. Yet because neutrinos barely interact with matter, they are notoriously difficult to detect.

The existence of the neutrino was first proposed in the 1930s and then verified in the 1950s (SN: 2/13/54). Decades later, much about the neutrino — named in part because it has no electric charge — remains a mystery, including how many varieties of neutrinos exist, how much mass they have, where that mass comes from and whether they have any magnetic properties.
These mysteries are at the heart of Ghost Particle by physicist Alan Chodos and science journalist James Riordon. The book is an informative, easy-to-follow introduction to the perplexing particle. Chodos and Riordon guide readers through how the neutrino was discovered, what we know — and don’t know — about it, and the ongoing and future experiments that (fingers crossed) will provide the answers.

It’s not just neutrino physicists who await those answers. Neutrinos, Riordon says, “are incredibly important both for understanding the universe and our existence in it.” Unmasking the neutrino could be key to unlocking the nature of dark matter, for instance. Or it could clear up the universe’s matter conundrum: The Big Bang should have produced equal amounts of matter and antimatter, the oppositely charged counterparts of electrons, protons and so on. When matter and antimatter come into contact, they annihilate each other. So in theory, the universe today should be empty — yet it’s not (SN: 9/22/22). It’s filled with matter and, for some reason, very little antimatter.

Science News spoke with Riordon, a frequent contributor to the magazine, about these puzzles and how neutrinos could act as a tool to observe the cosmos or even see into our own planet. The following conversation has been edited for length and clarity.

SN: In the first chapter, you list eight unanswered questions about neutrinos. Which is the most pressing to answer?

Riordon: Whether they’re their own antiparticles is probably one of the grandest. The proposal that neutrinos are their own antiparticles is an elegant solution to all sorts of problems, including the existence of this residue of matter we live in. Another one is figuring out how neutrinos fit in the standard model [of particle physics]. It’s one of the most successful theories there is, but it can’t explain the fact that neutrinos have mass.
SN: Why is now a good time to write a book about neutrinos?

Riordon: All of these questions about neutrinos are sort of coming to a head right now — the hints that neutrinos may be their own antiparticles, the issues of neutrinos not quite fitting the standard model, whether there are sterile neutrinos [a hypothetical neutrino that is a candidate for dark matter]. In the next few years, a decade or so, there will be a lot of experiments that will [help answer these questions,] and the resolution either way will be exciting.

SN: Neutrinos could also be used to help scientists observe a range of phenomena. What are some of the most interesting questions neutrinos could help with?

Riordon: There are some observations that simply have to be done with neutrinos, that there are no other technological alternatives for. There’s a problem with using light-based telescopes to look back in history. We have this really amazing James Webb Space Telescope that can see really far back in history. But at some point, when you go far enough back, the universe is basically opaque to light; you can’t see into it. Once we narrow down how to detect and how to measure the cosmic neutrino background [neutrinos that formed less than a second after the Big Bang], it will be a way to look back at the very beginning. Other than with gravitational waves, you can’t see back that far with anything else. So it’ll give us sort of a telescope back to the beginning of the universe.

The other thing is, when a supernova happens, all kinds of really cool stuff happens inside, and you can see it with neutrinos because neutrinos come out immediately in a burst. We call it the “cosmic neutrino bomb,” but you can track the supernova as it’s going along. With light, it takes a while for it to get out [of the stellar explosion]. We’re due for a [nearby] supernova. We haven’t had one since 1987. It was the last visible supernova in the sky and was a boon for research. Now that we have neutrino detectors around the world, this next one is going to be even better [for research], even more exciting.

And if we develop better instrumentation, we could use neutrinos to understand what’s going on in the center of the Earth. There’s no other way that you could probe the center of the Earth. We use seismic waves, but the resolution is really low. So we could resolve a lot of questions about what the planet is made of with neutrinos.

SN: Do you have a favorite “character” in the story of neutrinos?

Riordon: I’m certainly very fond of my grandfather Clyde Cowan [he and Frederick Reines were the first physicists to detect neutrinos]. But Reines is a riveting character. He was poetic. He was a singer. He really was this creative force. I mentioned [in the book] that they put this “SNEWS” sign on their detector for “supernova early warning system,” which sort of echoed the ballistic missile early warning systems at the time [during the Cold War]. That’s so ripe.

A trick inspired by Hansel and Gretel could help rovers explore other worlds

In the classic fairy tale, Hansel and Gretel dropped bread crumbs while walking through a treacherous forest so they wouldn’t lose their way. Rovers may one day use a similar trick to traverse other planets without losing their data.

Typically, if a rover permanently loses communication during a mission, all the information that it has gathered is lost. To avoid this, researchers suggest using a multi-rover system in which a smaller rover piggybacks on a larger “mother rover.” The smaller rover would then venture into any especially uncertain territory, such as a cave or lava tubes, deploying sensors the size of an AirPods case like bread crumbs as it goes.
The sensors could then communicate with each other via a wireless network and funnel any collected data back to the mother rover, theoretical physicist Wolfgang Fink and colleagues propose February 11 in Advances in Space Research. As proof of concept, the team built prototype sensors that communicate via Wi-Fi.

It’s not that the smaller rover would be following the “bread crumbs” back the way it came. Instead, “we use [the sensors] for the data to find its way communication-wise out of the cave to the mother rover,” says Fink, of the University of Arizona in Tucson.

The technology could also be useful here on Earth, especially after a natural disaster such as an earthquake. A rover could be sent with the deployable sensors into rubble where it’s too dangerous for people to perform search-and-rescue missions (SN: 12/3/14).

The bread crumb–like communication network could allow researchers to “cater to the essence of scientific exploration,” Fink says, by allowing rovers to overcome some of the constraints posed by tricky terrain. “To get to the real exciting science, you most of the time have to go to exotic places, hard-to-get-to places.”

Astronomers spotted shock waves shaking the web of the universe for the first time

For the first time, astronomers have caught a glimpse of shock waves rippling along strands of the cosmic web — the enormous tangle of galaxies, gas and dark matter that fills the observable universe.

Combining hundreds of thousands of radio telescope images revealed the faint glow cast as shock waves send charged particles flying through the magnetic fields that run along the cosmic web. Spotting these shock waves could give astronomers a better look at these large-scale magnetic fields, whose properties and origins are largely mysterious, researchers report in the Feb. 17 Science Advances.
Finally, astronomers “can confirm what so far has only been predicted by simulations — that these shock waves exist,” says astrophysicist Marcus Brüggen of the University of Hamburg in Germany, who was not involved in the new study.

At its grandest scale, our universe looks something like Swiss cheese. Galaxies aren’t distributed evenly through space but rather are clumped together in enormous clusters connected by ropy filaments of dilute gas, galaxies and dark matter and separated by not-quite-empty voids (SN: 10/3/19).

Tugged by gravity, galaxy clusters merge, filaments collide, and gas from the voids falls onto filaments and clusters. In simulations of the cosmic web, all that action consistently sets off enormous shock waves in and along filaments.

Filaments make up most of the cosmic web but are much harder to spot than galaxies (SN: 1/20/14). While scientists have observed shock waves around galaxy clusters before, shocks in filaments “have never been really seen,” says astronomer Reinout van Weeren of Leiden University in the Netherlands, who was not involved in the study. “But they should be basically all around the cosmic web.”

Shock waves around filaments would accelerate charged particles through the magnetic fields that suffuse the cosmic web (SN: 6/6/19). When that happens, the particles emit light at wavelengths that radio telescopes can detect — though the signals are very weak.
A single shock wave in a filament “would look like nothing, it’d look like noise,” says radio astronomer Tessa Vernstrom of the International Centre for Radio Astronomy Research in Crawley, Australia.

Instead of looking for individual shock waves, Vernstrom and her colleagues combined radio images of more than 600,000 pairs of galaxy clusters close enough to be connected by filaments to create a single “stacked” image. This amplified weak signals and revealed that, on average, there is a faint radio glow from the filaments between clusters.

“When you can dig below the noise and still actually get a result — to me, that’s personally exciting,” Vernstrom says.

The faint signal is highly polarized, meaning that the radio waves are mostly aligned with one another. Highly polarized light is unusual in the cosmos, but it is expected from radio light cast by shock waves, van Weeren says. “So that’s really, I think, very good evidence for the fact that the shocks are likely indeed present.”
The discovery goes beyond confirming the predictions of cosmic web simulations. The polarized radio emissions also offer a rare peek at the magnetic fields that permeate the cosmic web, if only indirectly.

“These shocks,” Brüggen says, “are really able to show that there are large-scale magnetic fields that form [something] like a sheath around these filaments.”

He, van Weeren and Vernstrom all note that it’s still an open question how cosmic magnetic fields arose in the first place. The role these fields play in shaping the cosmic web is equally mysterious.

“It’s one of the four fundamental forces of nature, right? Magnetism,” Vernstrom says. “But at least on these large scales, we don’t really know how important it is.”

Bird flu can jump to mammals. Should we worry?

An uncomfortable truth is that there is another influenza pandemic in humankind’s future. Whether it will be a relative of the lethal avian flu strain currently wreaking havoc in bird populations around the globe is anyone’s guess.

Because the virus, called H5N1, can be deadly to birds, mammals and people, researchers closely monitor reports of new cases. Worryingly, a new variant of H5N1 that emerged in 2020 has not only spread farther than ever before among birds, but has also spilled over into other animals, raising the specter of a human outbreak (SN: 12/12/22).

The variant was linked to a seal die-off in Maine last summer. In October, there was an H5N1 outbreak on a mink farm in Spain, researchers reported in January in Eurosurveillance. (It’s unclear how the mink were exposed, but the animals were fed poultry by-products.) Sea lions off the coast of Peru and wild bears, foxes and skunks, which prey upon or scavenge birds, in the United States and Europe have also tested positive for the virus.

Globally, hundreds of millions of domestic poultry have been culled or died from the new variant. It’s also likely that millions of wild birds have died, though few governmental agencies are counting, says Michelle Wille a viral ecologist at the University of Sydney who studies avian influenza. “This virus is catastrophic for bird populations.”

A handful of human cases have also been reported, though there’s no evidence that the virus is spreading among people. Of seven cases, six people recovered and one person from China died. In February, health officials in China reported an eighth case in a woman whose current condition is unknown.

What’s more, four of the reported human cases — including a U.S. case from Colorado and two workers linked to the Spanish mink farm — were in people who didn’t have any respiratory symptoms. That leaves open the possibility that those people were not truly infected. Instead, tests may have picked up viral contamination, say in the nose, that the people breathed in while handling infected birds.

The impossibility of predicting which avian influenza viruses might make the jump to people and spark an outbreak is in part related to knowledge gaps. These bird pathogens don’t typically easily infect or circulate among mammals including humans. And scientists don’t have a full grasp on how these viruses might need to change for human transmission to occur.

For now, it’s encouraging that so few people have gotten infected amid such a large outbreak among birds and other animals, says Marie Culhane, a food animal veterinarian at the University of Minnesota in St. Paul. Still, experts around the globe are diligently watching for any signs the virus may be evolving to spread more easily between people.

The good news is that flu drugs and vaccines that work against the virus already exist, Wille says. Compared with where the world was when the coronavirus behind the COVID-19 pandemic came on the scene, “we are already ahead of the game.”

How the virus would need to change to spread among people is a big unknown
This new iteration of bird flu is what’s called a highly pathogenic avian influenza, one that is particularly lethal for both domestic and wild birds. Aquatic birds such as ducks naturally carry avian flus with no or minor signs of infection. But when influenza viruses shuffle between poultry and waterfowl, variants with changes that make them lethal to birds can emerge and spread.

Avian viruses can be severe or even deadly for people. Since 2003, there have been 873 human cases of H5N1 infections reported to the World Health Organization. A little less than half of those people died. In February, an 11-year-old girl in Cambodia died after she developed severe pneumonia from an avian flu virus, the country’s first reported infection since 2014. Her father was also infected with the virus — a different variant than the one behind the widespread outbreak in birds —though he has not developed symptoms. It’s unknown how the two people were exposed.

Some of what scientists know about H5N1’s pandemic potential comes from controversial research on ferrets done more than a decade ago (SN: 6/21/13). Experiments showed that some changes to proteins that help the virus break into cells and make more copies of itself could help the virus travel through the air to infect ferrets, a common laboratory stand-in for humans in influenza research.

While researchers know these mutations are important in lab settings, it’s still unclear how crucial those changes are in the real world, says Jonathan Runstadler, a disease ecologist and virologist at Tufts University’s Cummings School of Veterinary Medicine in North Grafton, Mass.
Viruses change constantly, but not all genetic tweaks work together. A change may help one version of the virus transmit better, while also hurting another variant and making it less likely to spread.

“We’re not sure how critical or how big a difference or how much to worry about those mutations when they happen in the wild,” Runstadler says. “Or when they happen five years down the road when there are other changes in the virus’s genetic background that are impacting those [original] mutations.”

That doesn’t stop researchers from trying to pinpoint specific changes. Runstadler and his team look for viruses in nature that have jumped into new animals and work backward to figure out which mutations were crucial. And virologist Louise Moncla says her lab is trying to develop ways to scan entire genetic blueprints of viruses from past outbreaks to look for signatures of a virus that can jump between different animal species.

“There’s a ton that we don’t know about avian influenza viruses and host switching,” says Moncla, of the University of Pennsylvania.

Genetic analyses of H5N1 circulating on the mink farm in Spain, for instance, revealed a change known to help the virus infect mice and mammalian cells grown in the lab. Such a change could make it easier for the virus to spread among mammals, including people. There could have been mink-to-mink transmission on the farm, the researchers concluded, but it remains unclear how much of a role that specific mutation played in the outbreak.

It’s a numbers game for when influenza viruses with the ability to transmit among mammals might make the jump from birds, Runstadler says. “The more chances you give the virus to spill over and adapt, the higher the risk will be that one of those adaptations will be effective [at helping the virus spread among other animals] or take root and be a real problem.”

The ongoing outbreak is still a big problem for birds
Irrespective of our inability to forecast human’s future with H5N1, it’s clear that many species of birds — and some other animals that eat them — are dying now. And more species of birds are dying in this outbreak than previous ones, Culhane and Wille say.

“We have seen huge outbreaks in raptors and seabirds, which were never really affected before,” Wille says. It’s possible that genetic changes have helped the virus to spread more efficiently among birds than previous versions of H5N1, but that’s unknown. “There are a number of studies underway to try and figure it out,” Wille says.
Historically, these deadly avian flus have not been a persistent problem in the Americas, Moncla says. Sporadic outbreaks of H5N1 variants are typically limited to places such as parts of Asia, where the virus has circulated in birds since its emergence in the late 1990s, and northern Africa.

North America’s last big avian flu outbreak was in 2015, when experts detected more than 200 cases of a different bird flu virus in commercial and backyard poultry across the United States. The poultry industry culled more than 45 million birds to stop that virus’s spread, Culhane says. “But it didn’t go away from the rest of the world.”

The latest version of H5N1 arrived on North American shores from Europe in late 2021, first popping up in Canada in Newfoundland and Labrador. From there, it spread south into the United States, where so far tens of millions of domestic poultry have been culled to prevent transmission on farms where the virus has been detected. By December 2022, the virus had made it to South America. In Peru, tens of thousands of pelicans and more than 700 sea lions have died since mid-January.

It’s important to understand exactly how nonbird animals are getting exposed, Culhane says. Highly pathogenic avian influenzas infect every organ of a bird’s body. So, a fox chowing down on an infected bird is exposing its own mouth, nose and stomach to a lot of virus as it eats its meal.

For now, experts are keeping an eye on infected animals to raise the alarm early if H5N1 starts transmitting among mammals.

“I do think that the mink outbreak, and then the sea lion outbreak, is a wake-up call,” Moncla says. “We should be doing our very best to implement all the science we can to try and understand what’s happening with these viruses so that if the situation does change, we are better prepared.”

Is this the superconductor of scientists’ dreams? A new claim faces scrutiny

LAS VEGAS — It’s a bold claim: The quest to create a superconductor that works under practical conditions is finally fulfilled, a team of researchers says. But controversy has dogged the team’s earlier claim of record-breaking superconductivity, and the new result is already facing extreme scrutiny.

The ultimate test will be whether the result can be confirmed by other researchers, says physicist Mikhail Eremets of the Max Planck Institute for Chemistry in Mainz, Germany. “I repeat it like [a] mantra: ‘Reproduce.’”
Many materials become superconductors, able to transmit electricity with no resistance, provided they’re cooled to very low temperatures. A few superconductors work under warmer conditions, but those must be squeezed to crushing pressures, so they’re impractical to use.

Now physicist Ranga Dias of the University of Rochester in New York and colleagues say they have created a superconductor that works at both room temperature and relatively low pressure. A superconductor that operates under such commonplace conditions could herald a new age of high-efficiency machines, supersensitive instrumentation and revolutionary electronics.

“This is the start of the new type of material that’s useful for practical applications,” Dias said March 7 at the American Physical Society meeting, where he reported the feat.

The superconductor is made of hydrogen mixed with nitrogen and a rare earth element called lutetium, Dias and colleagues report March 8 in Nature. The team combined the elements and squeezed them in a device known as a diamond anvil cell. The researchers then varied the pressure and temperature and measured the resistance to electrical flow in the compound.

At temperatures as high as 294 kelvins (about 21° Celsius or 70° Fahrenheit), the material seemed to lose any electrical resistance. It still required pressures of 10 kilobar, which is about 10,000 times the pressure of Earth’s atmosphere. But that’s far lower than the millions of atmospheres of pressure typically required for superconductors that operate near room temperature. If confirmed, that makes the material much more promising for real-world applications.

The material displayed several hallmarks of a superconductor, the team reports. Not only did the electrical resistance suddenly drop as it became superconducting, but the material also expelled magnetic fields and exhibited an abrupt change in its heat capacity, Dias says.

When the researchers put the squeeze on the material in the diamond anvil cell, it suddenly turned from a bluish hue to hot pink. “I had never seen a color change like this in a material,” Dias says. “It was like, wow.” That color change indicated a shift in the electrical properties of the material as it became a superconductor, Dias says.
This superconductor might be able to escape the confines of a diamond anvil cell, Dias says, opening it up to practical applications. A technique called strain engineering, for example, could mimic the required pressure. In such a process, researchers grow a material on a surface that constrains growth, putting a strain on the material that replicates the effects of externally applied squeezing.

Still, the research faces significant skepticism, in part because of the firestorm over the team’s earlier publication that claimed the discovery of superconductivity in a compound of carbon, sulfur and hydrogen at 15° C (SN: 10/14/20). Editors at Nature retracted that paper, over the objection of Dias and his coauthors, citing irregularities in the researchers’ data handling that undermined the editors’ confidence in the claims (SN: 10/3/22).

Several experts have expressed a lack of confidence in the new results presented by Dias’ group, based on that history. Not only was the previous result retracted, but other researchers were unable to reproduce it, says Eremets, including his own group at the Max Planck Institute. “The main test of validity — reproducibility — was failed, and from my point of view that’s the most important thing.”

The stakes are high. “If it’s true, it’s a great discovery,” says physicist Eugene Gregoryanz of the University of Edinburgh. But he views the researchers with suspicion. “Whether it’s true or not, I guess time will show.”

Others are more positive. “It’s an excellent study,” says materials chemist Russell Hemley of the University of Illinois Chicago. “The data as presented, in terms of evidence for superconductivity, is very strong.” Hemley was not involved with the study but has collaborated with Dias in the past, including on a follow-up to the retracted superconductor paper. Submitted February 16 at arXiv.org, that paper, which has not yet passed peer-review, reports that the previously claimed superconductor does function near room temperature.

The new superconductor is a hydrogen-rich type known as a hydride. Scientists predict that pure hydrogen should be a room-temperature superconductor, but only at extremely high pressures that make it difficult to produce. To lower the pressure, scientists have added in other elements, making hydride superconductors.

In 2015, Eremets and colleagues produced a compound of sulfur and hydrogen that was superconducting up to −70° C, a record high temperature at the time (SN: 12/15/15). A few years later, a compound of lanthanum and hydrogen was found to superconduct under still chilly conditions, but even closer to room temperature (SN: 9/10/18). Both materials require pressures too high for practical use.

It’s difficult to understand how the new superconductor fits in with other hydrides. Theoretical calculations of how similar hydrides behave wouldn’t suggest that such a material would be superconducting at the reported temperatures and pressures, says theoretical physicist Lilia Boeri of the Sapienza University of Rome. “For me, it looks very strange,” Boeri says. “It’s something completely unexpected…. If it’s true, it’s very different from the other hydrides.”

The Yamnaya may have been the world’s earliest known horseback riders

WASHINGTON — The tale of the first horseback riders may be written on the bones of the ancient Yamnaya people.

Five excavated skeletons dated to about 3000 to 2500 B.C. show clear signs of physical stress that hint these Yamnaya individuals may have frequently ridden horses, researchers reported March 3 at the American Association for the Advancement of Science Annual Meeting and in Science Advances. That makes the Yamnaya the earliest humans identified as likely horseback riders so far.
Five thousand years ago, the Yamnaya migrated widely, spreading Indo-European languages and altering the human gene pool across Europe and Asia (SN: 11/15/17; SN: 9/5/19). Their travels eventually stretched from modern-day Hungary to Mongolia, roughly 4,500 kilometers, and are thought to have taken place over only a couple of centuries.

“In many ways, [the Yamnaya] changed the history of Eurasia,” says archaeologist Volker Heyd of the University of Helsinki.

Horse domestication became widely established around 3500 B.C., probably for milk and meat (SN: 7/6/17). Some researchers have suggested the Botai people in modern-day Kazakhstan started riding horses during that time, but that’s debated (SN: 3/5/09). The Yamnaya had horses as well, and archaeologists have speculated that the people probably rode them, but evidence was lacking.

But the oldest known depictions of horseback riding are from about 2000 B.C. Complicating efforts to determine when the behavior emerged, possible riding gear would have been made of long-decayed natural materials, and scientists rarely, if ever, find complete horse skeletons from that time.
Heyd and colleagues weren’t seeking evidence of horsemanship. They were working on a massive project called the Yamnaya Impact on Prehistoric Europe to understand every aspect of the people’s lives.

While assessing over 200 human skeletons excavated from countries including Romania, Bulgaria and Hungary, bioanthropologist Martin Trautmann noticed that one individual’s bones carried distinct traits on the femur and elsewhere that he’d seen before. He immediately suspected horseback riding.

“It was just kind of a surprise,” says Trautmann, also of the University of Helsinki.

If it were a one-off case, he says he would have dismissed it. But as he continued analyzing skeletons, he noticed that several had the same traits.

Trautmann, Heyd and colleagues assessed all the skeletons for the presence of six physical signs of horseback riding that have been documented in previous research, a constellation of traits dubbed horsemanship syndrome. These signs included pelvis and femur marks that could have come from the biomechanical stress of sitting with spread legs while holding onto a horse, as well as healed vertebrae damage from injuries that could have come from falling off. The team also created a scoring system to account for the skeletal traits’ severity, preservation and relative importance.

“Bones are living tissue,” Trautmann says. “So they react to any type of environmental stimulus.”

The team deemed five Yamnaya male individuals as frequent horseback riders because they had four or more signs of horsemanship. Nine other Yamnaya males probably rode horses, but the researchers were less confident because the skeletons each displayed only three markers.
“Hypothetically speaking, it’s very logical,” says bioarchaeologist Maria Mednikova of the Russian Academy of Sciences in Moscow, who was not involved in the new study. The Yamnaya were very close to horses, she says, so at some point, they probably experimented with riding.

She now plans to check for the horse-riding traits in the Yamnaya skeletons she has access to. “The human skeletal system is like a book — if you have some knowledge, you can read it,” Mednikova says.

Archaeologist Ursula Brosseder, who also was not involved in the work, warns not to interpret this finding as equestrianism reaching its full bloom within the Yamnaya culture. Brosseder, formerly of the University of Bonn in Germany, sees the paper’s discovery as humans still figuring out what they could do with horses as part of early domestication.

As for Heyd, he says he has long suspected that the Yamnaya rode horses, considering that they had the animals and expanded so rapidly across such a large area. “Now, we have proof.”

What the first look at the genetics of Chernobyl’s dogs revealed

For generations of dogs, home is the radioactive remains of the Chernobyl Nuclear Power Plant.

In the first genetic analysis of these animals, scientists have discovered that dogs living in the power plant industrial area are genetically distinct from dogs living farther away.

Though the team could distinguish between dog populations, the researchers did not pinpoint radiation as the reason for any genetic differences. But future studies that build on the findings, reported March 3 in Science Advances, may help uncover how radioactive environments leave their mark on animal genomes.
That could have implications for other nuclear disasters and even human space travel, says Timothy Mousseau, an evolutionary ecologist at the University of South Carolina in Columbia. “We have high hopes that what we learn from these dogs … will be of use for understanding human exposures in the future,” he says.

Since his first trip in 1999, Mousseau has stopped counting how many times he’s been to Chernobyl. “I lost track after we hit about 50 visits.”

He first encountered Chernobyl’s semi-feral dogs in 2017, on a trip with the Clean Futures Fund+, an organization that provides veterinary care to the animals. Not much is known about how local dogs survived after the nuclear accident. In 1986, an explosion at one of the power plant’s reactors kicked off a disaster that lofted vast amounts of radioactive isotopes into the air. Contamination from the plant’s radioactive cloud largely settled nearby, in a region now called the Chernobyl Exclusion Zone.

Dogs have lived in the area since the disaster, fed by Chernobyl cleanup workers and tourists. Some 250 strays were living in and around the power plant, among spent fuel-processing facilities and in the shadow of the ruined reactor. Hundreds more roam farther out in the exclusion zone, an area about the size of Yosemite National Park.
During Mousseau’s visits, his team collected blood samples from these dogs for DNA analysis, which let the researchers map out the dogs’ complex family structures. “We know who’s related to who,” says Elaine Ostrander, a geneticist at the National Human Genome Research Institute in Bethesda, Md. “We know their heritage.”

The canine packs are not just a hodgepodge of wild feral dogs, she says. “There are actually families of dogs breeding, living, existing in the power plant,” she says. “Who would have imagined?”

Dogs within the exclusion zone share ancestry with German shepherds and other shepherd breeds, like many other free-breeding dogs from Eastern Europe, the team reports. And though their work revealed that dogs in the power plant area look genetically different from dogs in Chernobyl City, about 15 kilometers away, the team does not know whether radiation caused these differences or not, Ostrander says. The dogs may be genetically distinct simply because they’re living in a relatively isolated area.

The new finding is not so surprising, says Jim Smith, an environmental scientist at the University of Portsmouth in England. He was not part of the new study but has worked in this field for decades. He’s concerned that people might assume “that the radiation has something to do with it,” he says. But “there’s no evidence of that.”

Scientists have been trying to pin down how radiation exposure at Chernobyl has affected wildlife for decades (SN: 5/2/14). “We’ve been looking at the consequences for birds and rodents and bacteria and plants,” Mousseau says. His team has found animals with elevated mutation rates, shortened life spans and early-onset cataracts.

It’s not easy to tease out the effects of low-dose radiation among other factors, Smith says. “[These studies] are so hard … there’s lots of other stuff going in the natural environment.” What’s more, animals can reap some benefits when humans leave contaminated zones, he says.

How, or if, radiation damage is piling up in dogs’ genomes is something the team is looking into now, Ostrander says. Knowing the dogs’ genetic backgrounds will make it easier to spot any radiation red flags, says Bridgett vonHoldt, an evolutionary geneticist at Princeton University, who was not involved in the work.

“I feel like it’s a cliffhanger,” she says. “I want to know more.”