Einstein’s light-bending by single far-off star detected

For the first time, astronomers have seen a star outside of the solar system bend the light from another star. The measurement, reported June 7 in Austin, Texas, at a meeting of the American Astronomical Society, vindicates both Einstein’s most famous theory and what goes on in the inner lives of stellar corpses.

Astronomers using the Hubble Space Telescope watched as a white dwarf passed in front of a more distant star. That star seemed to move in a small loop, its apparent position deflected by the white dwarf’s gravity.
More than a century ago, Albert Einstein predicted that the way spacetime bends around a massive object — the sun, say — should shift the apparent position of stars that appear behind that object. The measurement of this effect during a solar eclipse in 1919 confirmed Einstein’s general theory of relativity: Mass warps spacetime and bends the path of light rays (SN: 10/17/15, p. 16).

The New York Times hailed it as “one of the greatest — perhaps the greatest — of achievements in the history of human thought.” But even Einstein doubted the light-bending effect could be detected for more distant stars than the sun.

Now, in a study published in the June 9 issue of Science, Kailash Sahu of the Space Telescope Science Institute in Baltimore and his colleagues have shown that it can.

“This is an elegant outcome,” says Terry Oswalt at Embry-Riddle Aeronautical University in Daytona Beach, Fla., who was not involved in the new work. “Einstein would be very proud.”
While the stars literally aligned to make the measurement possible, this was no lucky accident. Sahu and colleagues scoured a catalog of 5,000 stellar motions to find a pair of stars likely to pass close enough on the sky that Hubble could sense the shift.

There were a few possible candidates, and one of them, called Stein 2051 B, was already a mysterious character.

Located about 18 light-years from Earth, Stein 2051 B is a white dwarf, a common end-of-life state for a sunlike star. When low-mass stars run out of fuel, they puff up into a red giant while fusing helium into carbon and oxygen. Eventually, they slough off outer layers of gas, leaving this carbon-oxygen core — the white dwarf — behind. About 97 percent of the stars in the Milky Way, including the sun, are or someday will be white dwarfs.

White dwarfs are extremely dense. They are prevented from collapsing into a black hole only by the pressure their electrons produce in trying not to be in the same quantum state as each other. This bizarre situation sets strict limits on their sizes and masses: For a given radius, a white dwarf can be only so massive, and only so large for a given mass.

This mass-radius relation was laid out in Nobel prize‒winning work by Subrahmanyan Chandrasekhar in the 1930s, but it has been difficult to prove. The only white dwarfs weighed so far share their orbits with other stars whose mutual motions help astronomers calculate their masses. But some astronomers worry that those companions could have added mass to the white dwarfs, throwing off this precise relationship.

Stein 2051 B also has a companion, but it is so far away that the two stars almost certainly evolved independently. That distance also means it would take hundreds of years to precisely measure the white dwarf’s mass. The best efforts to find a rough mass so far created a conundrum: Stein 2051 B appeared to be much lighter than expected. It would need an exotic iron core to explain it.

Measuring the shift of a background star provides a way to measure the white dwarf’s mass directly. The more massive the foreground star — in this case, the white dwarf — the greater the deflection of light from the background star.

“This is the most direct method of measuring the mass,” Sahu says. “It’s almost like putting somebody on a scale and reading off their weight.”

The white dwarf was scheduled to pass near a background star on March 5, 2014. Sahu’s team made eight observations of the two stars’ positions between October 2013 and October 2015.

The team found that the background star appeared to move in a small ellipse as the white dwarf approached and then moved away from it, exactly as predicted by Einstein’s equations. That suggests its mass is 0.675 times the mass of the sun — well within the normal range for its size.

This first measurement won’t be the last, Oswalt says. Several new star surveys are coming online in the next few years that will track the motions of billions of stars at once. That means that even though light-bending alignments are rare, astronomers should catch several more soon.

Kepler shows small exoplanets are either super-Earths or mini-Neptunes

Small worlds come in two flavors. The complete dataset from the original mission of the planet-hunting Kepler space telescope reveals a split in the exoplanet family tree, setting super-Earths apart from mini-Neptunes.

Kepler’s final exoplanet catalog, released in a news conference June 19, now consists of 4,034 exoplanet candidates. Of those, 49 are rocky worlds in their stars’ habitable zones, including 10 newly discovered ones. So far, 2,335 candidates have been confirmed as planets and they include about 30 temperate, terrestrial worlds.
Careful measurements of the candidates’ stars revealed a surprising gap between planets about 1.5 and two times the size of Earth, Benjamin Fulton of the University of Hawaii at Manoa and Caltech and his colleagues found. There are a few planets in the gap, but most straddle it.

That splits the population of small planets into those that are rocky like Earth — 1.5 Earth radii or less — and those that are gassy like Neptune, between 2 and 3.5 Earth radii.

“This is a major new division in the family tree of exoplanets, somewhat analogous to the discovery that mammals and lizards are separate branches on the tree of life,” Fulton said.

The Kepler space telescope launched in 2009 and stared at a single patch of sky in the constellation Cygnus for four years. (Its stabilizing reaction wheels later broke and it began a new mission called K2 (SN Online: 5/15/13).) Kepler watched sunlike stars for telltale dips in brightness that would reveal a passing planet. Its ultimate goal was to come up with a single number: The fraction of stars like the sun that host planets like Earth.
The Kepler team has still not calculated that number, but astronomers are confident that they have enough data to do so, said Susan Thompson of the SETI Institute in Mountain View, Calif. She presented the results during the Kepler/K2 Science Conference IV being held at NASA’s Ames Research Center in Moffett Field, Calif.

Thompson and her colleagues ran the Kepler dataset through “Robovetter” software, which acted like a sieve to catch all the potential planets it contained. Running fake planet data through the software pinpointed how likely it was to confuse other signals for a planet or miss true planets.

“This is the first time we have a population that’s really well-characterized so we can do a statistical study and understand Earth analogs out there,” Thompson said.

Astronomers’ knowledge of these planets is only as good as their knowledge of their stars. So Fulton and his colleagues used the Keck telescope in Hawaii to precisely measure the sizes of 1,300 planet-hosting stars in the Kepler field of view. Those sizes in turn helped pin down the sizes of the planets with four times more precision than before.

The split in planet types they found could come from small differences in the planets’ sizes, compositions and distances from their stars. Young stars blow powerful winds of charged particles, which can blowtorch a growing planet’s atmosphere away. If a planet was too close to its star or too small to have a thick atmosphere — less than 75 percent larger than Earth — it would lose its atmosphere and end up in the smaller group. The planets that look more like Neptune today either had more gas to begin with or grew up in a gentler environment, Fulton said.

That divergence could have implications for the abundance of life in the galaxy. The surfaces of mini-Neptunes — if they exist — would suffer under the crushing pressure of such a thick atmosphere.

“These would not be nice places to live,” Fulton said. “Our result sharpens up the dividing line between potentially habitable planets and those that are inhospitable.”

Upcoming missions, like the Transiting Exoplanet Survey Satellite due to launch in 2018, will fill in the details of the exoplanet landscape with more observations of planets around bright stars. Later, telescopes like the James Webb Space Telescope, also scheduled to launch in 2018, will be able to check the atmospheres of those planets for signs of life.

“We can now really ask the question, ‘Is our planetary system unique in the galaxy?’” exoplanet astronomer Courtney Dressing of Caltech says. “My guess is the answer’s no. We’re not that special.”

Moon had a magnetic field for at least a billion years longer than thought

The moon had a magnetic field for at least 2 billion years, or maybe longer.

Analysis of a relatively young rock collected by Apollo astronauts reveals the moon had a weak magnetic field until 1 billion to 2.5 billion years ago, at least a billion years later than previous data showed. Extending this lifetime offers insights into how small bodies generate magnetic fields, researchers report August 9 in Science Advances. The result may also suggest how life could survive on tiny planets or moons.
“A magnetic field protects the atmosphere of a planet or moon, and the atmosphere protects the surface,” says study coauthor Sonia Tikoo, a planetary scientist at Rutgers University in New Brunswick, N.J. Together, the two protect the potential habitability of the planet or moon, possibly those far beyond our solar system.

The moon does not currently have a global magnetic field. Whether one ever existed was a question debated for decades (SN: 12/17/11, p. 17). On Earth, molten rock sloshes around the outer core of the planet over time, causing electrically conductive fluid moving inside to form a magnetic field. This setup is called a dynamo. At 1 percent of Earth’s mass, the moon would have cooled too quickly to generate a long-lived roiling interior.
Magnetized rocks brought back by Apollo astronauts, however, revealed that the moon must have had some magnetizing force. The rocks suggested that the magnetic field was strong at least 4.25 billion years ago, early on in the moon’s history, but then dwindled and maybe even got cut off about 3.1 billion years ago.
Tikoo and colleagues analyzed fragments of a lunar rock collected along the southern rim of the moon’s Dune Crater during the Apollo 15 mission in 1971. The team determined the rock was 1 billion to 2.5 billion years old and found it was magnetized. The finding suggests the moon had a magnetic field, albeit a weak one, when the rock formed, the researchers conclude.
A drop in the magnetic field strength suggests the dynamo driving it was generated in two distinct ways, Tikoo says. Early on, Earth and the moon would have sat much closer together, allowing Earth’s gravity to tug on and spin the rocky exterior of the moon. That outer layer would have dragged against the liquid interior, generating friction and a very strong magnetic field (SN Online: 12/4/14).

Then slowly, starting about 3.5 billion years ago, the moon moved away from Earth, weakening the dynamo. But by that point, the moon would have started to cool, causing less dense, hotter material in the core to rise and denser, cooler material to sink, as in Earth’s core. This roiling of material would have sustained a weak field that lasted for at least a billion years, until the moon’s interior cooled, causing the dynamo to die completely, the team suggests.

The two-pronged explanation for the moon’s dynamo is “an entirely plausible idea,” says planetary scientist Ian Garrick-Bethell of the University of California, Santa Cruz. But researchers are just starting to create computer simulations of the strength of magnetic fields to understand how such weaker fields might arise. So it is hard to say exactly what generated the lunar dynamo, he says.

If the idea is correct, it may mean other small planets and moons could have similarly weak, long-lived magnetic fields. Having such an enduring shield could protect those bodies from harmful radiation, boosting the chances for life to survive.

Here are the paths of the next 15 total solar eclipses

August’s total solar eclipse won’t be the last time the moon cloaks the sun’s light. From now to 2040, for example, skywatchers around the globe can witness 15 such events.

Their predicted paths aren’t random scribbles. Solar eclipses occur in what’s called a Saros cycle — a period that lasts about 18 years, 11 days and eight hours, and is governed by the moon’s orbit. (Lunar eclipses follow a Saros cycle, too, which the Chaldeans first noticed probably around 500 B.C.)

Two total solar eclipses separated by that 18-years-and-change period are almost twins — compare this year’s eclipse with the Sept. 2, 2035 eclipse, for example. They take place at roughly the same time of year, at roughly the same latitude and with the moon at about the same distance from Earth. But those extra eight hours, during which the Earth has rotated an additional third of the way on its axis, shift the eclipse path to a different part of the planet.
This cycle repeats over time, creating a family of eclipses called a Saros series. A series lasts 12 to 15 centuries and includes about 70 or more eclipses. The solar eclipses of 2019 and 2037 belong to a different Saros series, so their paths too are shifted mimics. Their tracks differ in shape from 2017’s, because the moon is at a different place in its orbit when it passes between the Earth and the sun. Paths are wider at the poles because the moon’s shadow is hitting the Earth’s surface at a steep angle.

Predicting and mapping past and future eclipses allows scientists “to examine the patterns of eclipse cycles, the most prominent of which is the Saros,” says astrophysicist Fred Espenak, who is retired from NASA’s Goddard Spaceflight Center in Greenbelt, Md.

He would know. Espenak and his colleague Jean Meeus, a retired Belgian astronomer, have mapped solar eclipse paths from 2000 B.C. to A.D. 3000. For archaeologists and historians peering backward, the maps help match up accounts of long-ago eclipses with actual paths. For eclipse chasers peering forward, the data are an itinerary.

“I got interested in figuring out how to calculate eclipse paths for my own use, for planning … expeditions,” says Espenak, who was 18 when he witnessed his first total solar eclipse. It was in 1970, and he secured permission to drive the family car from southern New York to North Carolina to see it. Since then, Espenak, nicknamed “Mr. Eclipse,” has been to every continent, including Antarctica, for a total eclipse of the sun.

“It’s such a dramatic, spectacular, beautiful event,” he says. “You only get a few brief minutes, typically, of totality before it ends. After it’s over, you’re craving to see it again.”

Brainless sponges contain early echoes of a nervous system

Brains are like sponges, slurping up new information. But sponges may also be a little bit like brains.

Sponges, which are humans’ very distant evolutionary relatives, don’t have nervous systems. But a detailed analysis of sponge cells turns up what might just be an echo of our own brains: cells called neuroids that crawl around the animal’s digestive chambers and send out messages, researchers report in the Nov. 5 Science.

The finding not only gives clues about the early evolution of more complicated nervous systems, but also raises many questions, says evolutionary biologist Thibaut Brunet of the Pasteur Institute in Paris, who wasn’t involved in the study. “This is just the beginning,” he says. “There’s a lot more to explore.”

The cells were lurking in Spongilla lacustris, a freshwater sponge that grows in lakes in the Northern Hemisphere. “We jokingly call it the Godzilla of sponges” because of the rhyme with Spongilla, say Jacob Musser, an evolutionary biologist in Detlev Arendt’s group at the European Molecular Biology Laboratory in Heidelberg, Germany.

Simple as they are, these sponges have a surprising amount of complexity, says Musser, who helped pry the sponges off a metal ferry dock using paint scrapers. “They’re such fascinating creatures.”
With sponges procured, Arendt, Musser and colleagues looked for genes active in individual sponge cells, ultimately arriving at a list of 18 distinct kinds of cells, some known and some unknown. Some of these cells used genes that are essential to more evolutionarily sophisticated nerve cells in other organisms for sending or receiving messages in the form of small blobs of cellular material called vesicles.

One such cell, called a neuroid, caught the scientists’ attention. After seeing that this cell was using those genes involved in nerve cell signaling, the researchers took a closer look. A view through a confocal microscope turned up an unexpected locale for the cells, Musser says. “We realized, ‘My God, they’re in the digestive chambers.’”

Large, circular digestive structures called choanocyte chambers help move water and nutrients through sponges’ canals, in part by the beating of hairlike cilia appendages (SN: 3/9/15). Neuroids were hovering around some of these cilia, the researchers found, and some of the cilia near neuroids were bent at angles that suggested that they were no longer moving.
The team suspects that these neuroids were sending signals to the cells charged with keeping the sponge fed, perhaps using vesicles to stop the movement of usually undulating cilia. If so, that would be a sophisticated level of control for an animal without a nervous system.

The finding suggests that sponges are using bits and bobs of communications systems that ultimately came together to work as brains of other animals. Understanding the details might provide clues to how nervous systems evolved. “What did animals have, before they had a nervous system?” Musser asks. “There aren’t many organisms that can tell us that. Sponges are one of them.”

What channel is Formula 1 on today? TV schedule, start time for 2021 Qatar Grand Prix

And then there were three.

Just three races in the 2021 Formula 1 world championship remain, and it looks like Red Bull's Max Verstappen is in the driver's seat to secure his first world driver's championship.
But hot on his tail is still Lewis Hamilton, who took home the victory in the Brazilian Grand Prix to once again tighten the gap at the top between he and Verstappen entering the final three sprints of the season.
To say "hot on his tail" would maybe be a bit of an undersell. Hamilton put together a fantastic trio of drives during the weekend, from qualifying to sprint qualifying to the race, starting in 10th and ending up first, even after taking a five-spot grid penalty for a violation.

It doesn't get much hotter than Qatar — or the 2021 F1 championship.

Here's what you need to know about this weekend's F1 race:

What channel is the F1 race on today?
Race: Qatar Grand Prix
Date: Sunday, Nov. 21
TV channel: ESPN 2
Live stream: fuboTV
The ESPN family of networks will broadcast all 2021 F1 races in the United States using Sky Sports' feed, with select races heading to ABC later in the season.

ESPN Deportes serves as the exclusive Spanish-language home for all 2021 F1 races in the U.S.

What time does the F1 race start today?
Date: Sunday, Nov. 21
Start time: 9 a.m. ET
The 9 a.m. ET start time for Sunday's race means the 2021 Qatar Grand Prix will start at 5 p.m. local time. Lights out will likely take place just after 9 a.m. ET. ESPN's prerace show usually airs in the hour before the start of the race.

Below is the complete TV schedule for the weekend's F1 events at the Qatar Grand Prix. All times are Eastern.

Date Event Time TV channel
Friday, Nov. 19 Practice 1 5:30 a.m. ESPN2
Friday, Nov. 19 Practice 2 9 a.m. ESPN2
Saturday, Nov. 20 Practice 3 6 a.m. ESPN2
Saturday, Nov. 20 Qualifying 9 a.m. ESPN2
Sunday, Nov. 21 Race 9 a.m. ESPN2
Formula 1 live stream for Qatar Grand Prix
For those who don't have a cable or satellite subscription, there are five major OTT TV streaming options that carry ESPN — fuboTV, Sling, Hulu, YouTubeTV and AT&T Now. Of the five, Hulu, fuboTV and YouTubeTV offer free-trial options.

Below are links to each.
For those who do have a cable or satellite subscription but are not in front of a TV, Formula 1 races in 2021 can be streamed live via phones, tablets and other devices on the ESPN app with authentication.

Formula 1 schedule 2021
In all, there are 23 scheduled races in the 2021 F1 season, with the Portuguese Grand Prix sliding onto the docket the first week in March. The originally scheduled Vietnam Grand Prix was removed after the arrest of Nguyen Duc Chung, while the Chinese Grand Prix is up in the air. It was originally scheduled for April 11 but will likely not take place this season.

The Singapore Grand Prix was also removed from the schedule, with the Turkish Grand Prix returning to the schedule in its stead.

All races will be broadcast in the U.S. on the ESPN family of networks, with the United States Grand Prix and Mexico City Grand Prix both airing on ABC.

Please note: The on-the-hour start times do not include the broadcast start time, which is typically five minutes before the start of the race. Times do not include ESPN's customary prerace shows.

MORE: Live stream F1 races all season on fuboTV (7-day free trial)

Here's the latest schedule:

Date Race Course Start time (ET) TV channel Winner
March 28 Bahrain Grand Prix Bahrain International Circuit 11 a.m. ESPN2 Lewis Hamilton (Mercedes)
April 18 Emilia Romagna Grand Prix Autodromo Internazionale Enzo e Dino Ferrari 9 a.m. ESPN Max Verstappen (Red Bull)
May 2 Portuguese Grand Prix Algarve International Circuit 10 a.m. ESPN Lewis Hamilton (Mercedes)
May 9 Spanish Grand Prix Circuit de Barcelona-Catalunya 9 a.m. ESPN Lewis Hamilton (Mercedes)
May 23 Monaco Grand Prix Circuit de Monaco 9 a.m. ESPN2 Max Verstappen (Red Bull)
June 6 Azerbaijan Grand Prix Baku City Circuit 8 a.m. ESPN Sergio Perez (Red Bull)
June 20 French Grand Prix Circuit Paul Ricard 9 a.m. ESPN Max Verstappen (Red Bull)
June 27 Styrian Grand Prix Red Bull Ring 9 a.m. ESPN Max Verstappen (Red Bull)
July 4 Austrian Grand Prix Red Bull Ring 9 a.m. ESPN Max Verstappen (Red Bull)
July 18 British Grand Prix Silverstone Circuit 10 a.m. ESPN Lewis Hamilton (Mercedes)
Aug. 1 Hungarian Grand Prix Hungaroring 9 a.m. ESPN Esteban Ocon (Alpine)
Aug. 29 Belgian Grand Prix Circuit de Spa-Francorchamps 9 a.m. ESPN2 Max Verstappen (Red Bull)
Sept. 5 Dutch Grand Prix Circuit Zandvoort 9 a.m. ESPN2 Max Verstappen (Red Bull)
Sept. 12 Italian Grand Prix Autodromo Nazionale di Monza 9 a.m. ESPN2 Daniel Ricciardo (McLaren)
Sept. 26 Russian Grand Prix Sochi Autodrom 8 a.m. ESPN2 Lewis Hamilton (Mercedes)
Oct. 10 Turkish Grand Prix Intercity Istanbul Park 8 a.m. ESPN2 Valtteri Bottas (Mercedes)
Oct. 24 United States Grand Prix Circuit of the Americas 3 p.m. ABC Max Verstappen (Red Bull)
Nov. 7 Mexico City Grand Prix Autodromo Hermanos Rodriguez 2 p.m. ABC Max Verstappen (Red Bull)
Nov. 14 São Paulo Grand Prix Autodromo Jose Carlos Pace Noon ESPN2 Lewis Hamilton (Mercedes)
Nov. 21 Qatar Grand Prix Losail International Circuit 9 a.m. ESPNews TBD
Dec. 5 Saudi Arabian Grand Prix Jeddah Street Circuit 11 p.m. ESPN2 TBD
Dec. 12 Abu Dhabi Grand Prix Yas Marina Circuit 8 a.m. ESPN2 TBD

The next Derrick Rose? Paul George sees greatness in Ja Morant

Grizzlies star Ja Morant has earned a lot of attention early on in the 2021-22 season, and rightfully so.

The 22-year-old has taken a monster leap from Year 2 to Year 3, looking like a player who is aiming higher than just a Most Improved Player of the Year award or the first All-Star bid of his career.
He is, of course, arguably the frontrunner for Most Improved and is well on his way to an All-Star nod, but Morant's name was a part of even bigger conversations through the first couple weeks of the season. It was a small sample size, but Morant started to carve a realistic path to an MVP trophy. And although that momentum has decelerated as we get further into the season – primarily because the Grizzlies might not win enough games for him to truly be considered – Morant has still earned that level of respect from his peers.
After the last time Morant faced off against the Clippers, a game in which he had 28 points and eight assists in a win, All-Star forward Paul George couldn't help but compare the No. 2 overall pick to a former MVP in Derrick Rose.

"He’s just explosive, electrifying," George said of Morant. "I’d compare him to like, D-Rose. I guarded him my rookie year, Indy-Chicago, and guarding Ja is very similar to how D-Rose was.

"It was just how quick and his ability to change direction, move his body in-air," George continued. "He made it tough for us. He put a lot of pressure on us. He’s explosive. You know the direction he wants to go. He wants to go left, we knew that, but he’s just so good and so fast, he still gets to it."

It's hard to argue with the comparison and when you actually line them up side-by-side, it gets even scarier.

When Rose became the youngest MVP in league history back in 2010-11, it was his age 22 season and third year in the league. Morant entered this season at 22 years old, marking his third in the league.

Their numbers during their third season are almost identical, too.

Comparing Ja Morant's 2021-22 season to Derrick Rose's MVP season
Year GP PPG APG RPG SPG FG% 3P% FT%
Derrick Rose 2010-11 81 25.0 7.7 4.1 1.0 44.5 33.2 85.8
Ja Morant 2020-21 14 25.9 7.3 5.1 1.6 49.3 38.2 77.5
Morant has only played 14 games and would obviously have to keep up this production over the course of an entire season the way Rose did, but still, he's on quite the trajectory.

As George did, you could use these same adjectives to describe both players: explosive, electrifying, shifty and athletic. They both even have that same killer instinct, never shying away from a big moment.

I mean, who is the first player that comes to mind when you see dunks like this:

What about drives like this, where he's changing direction, changing speed, floating in the air and still finding a way to finish amongst the trees:

You'll see a whole lot of those same moves in any season-long highlight tape from Rose back in 2010-11.

Even if Morant can't match Rose as a 22-year-old MVP, it's looking like the star guard will see his name in those types of discussions for many years to come with the potential to win the league's most prestigious individual award at some point down the line.

College Football Playoff rankings: Who are the top four teams in third CFP poll of 2021?

The Week 12 College Football Playoff rankings were easily adjustable for the selection committee. But they also set up to be a potentially chaotic final weekend of football.

Only one top-10 team in the most recent set of rankings lost on Saturday. That would be Oklahoma, a team the committee clearly didn't value in the first two sets of rankings, considering the Sooners' position at No. 8 overall in each of those weeks. The top seven teams remained the same following their loss, with Notre Dame, Oklahoma State and Wake Forest moving up to fill in the Sooners' spot.
A looming concern for this committee is what will happen if each of the one-loss Power 5 favorites win out the rest of the season. That could create a logjam of Oregon, Ohio State/Michigan/Michigan State and Oklahoma State/Oklahoma. That's to say nothing of the SEC, which could presumably lock up two spots should Alabama beat Georgia in the SEC championship.

Then there's the question of a potentially undefeated Cincinnati team, which if left out would join UCF as a twice-undefeated Group of 5 team that never got a chance to compete for a title.

There's still plenty of football left to be played, including the two Michigan teams vs. Ohio State in the Big Ten; Alabama taking on two ranked teams in the last three weeks of the season; Bedlam; and a not-insignificant end to the season for Cincy, which plays a ranked team in Houston.

It's all shaping up to be a wild, fun and potentially chaotic stretch to end the season. Best take a deep breath while you're still able. Until then, here's the latest top 25 rankings from Week 12:
College Football Playoff rankings 2021
Who are the top four CFP teams of third CFP poll of 2021?
Ranking Team Record
1 Georgia 10-0
2 Alabama 9-1
3 Oregon 9-1
4 Ohio State 9-1
Who are the first two teams out of third CFP poll of 2021?
Ranking Team Record
5 Cincinnati 10-0
6 Michigan 9-1
CFP top 25 rankings from third CFP poll of 2021
Rank Team Record
1 Georgia 10-0
2 Alabama 9-1
3 Oregon 9-1
4 Ohio State 9-1
5 Cincinnati 10-0
6 Michigan 9-1
7 Michigan State 9-1
8 Notre Dame 9-1
9 Oklahoma State 9-1
10 Wake Forest 9-1
11 Baylor 8-2
12 Ole Miss 8-2
13 Oklahoma 9-1
14 BYU 8-2
15 Wisconsin 7-3
16 Texas A&M 7-3
17 Iowa 8-2
18 Pitt 8-2
19 San Diego State 9-1
20 N.C. State 7-3
21 Arkansas 7-3
22 UTSA 10-0
23 Utah 7-3
24 Houston 9-1
25 Mississippi State 6-4